ISOLATION AND IDENTIFICATION OF SOME STRAINS OF AVIAN PARAMYXOVIRUS -1 FROM POULTRY BIRDS

By

SAMAR SAYED AHMED EBRAHIM

B.SC. Agric. SC. (Agricultural Microbiology), Ain Shams Univ., 2008M.SC. Agric. SC. (Agricultural viruses), Ain shams Univ., 2012

A thesis submitted in partial fulfillment of The requirements for the degree of

in
Agriculture Science
(Agricultural Viruses)

Department of Agricultural Microbiology
Faculty of Agriculture
Ain shams University

2016

Approval Sheet

ISOLATION AND IDENTIFICATION OF SOME STRAINS OF AVIAN PARAMYXOVIRUS -1 FROM POULTRY BIRDS

By

SAMAR SAYED AHMED EBRAHIM

B.SC. Agric. SC. (Agricultural Microbiology), Ain Shams Univ., 2008M.SC. Agric. SC. (Agricultural viruses), Ain shams Univ., 2012

This thesis for Ph.D. degree has been approved by: Dr. Sayed Ahmed Hassan Salem Chief of Research, Virology Department, Animal Health Research Institute. Dr. Sohair Ibrahim El-Afifi Prof. Emeritus of Agric. Viruses, Fac. of. Agriculture, Ain Shams University. Dr. Badawi Abd El-Salam Othman Prof. Emeritus of Agric. Viruses, Fac. of. Agriculture, Ain Shams University Dr. Khalid Abd El-Fattah El-Dougdoug Prof. Emeritus of Agric. Viruses, Fac. of. Agriculture, Ain Shams University. Date of Examination: / / 2016

ISOLATION AND IDENTIFICATION OF SOME STRAINS OF AVIAN PARAMYXOVIRUS -1 FROM POULTRY BIRDS

By

SAMAR SAYED AHMED EBRAHIM

B.SC. Agric. SC. (Agricultural Microbiology), Ain Shams Univ., 2008M.SC. Agric. SC. (Agricultural viruses), Ain shams Univ., 2012

Under the Supervision of:

Dr. Khalid Abd El-Fattah El-Dougdoug

Prof. Emeritus of Agric. Virology, Agric. Microbiol. Dept., Fac. of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Badawi Abd El-Salam Othman

Prof. Emeritus of Agric.Virology, Agric. Microbiol. Dept., Fac. of Agriculture, Ain Shams University.

ABSTRACT

Samar Sayed Ahmed: Isolation and identification of some strains of avian paramyxovirus -1 from poultry birds. Unpublished Ph.D. Thesis, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, 2016.

Newcastle disease (ND) is a contagious and damaging viral infection of fowl and orderly by immunization. Despite immunization, prevalence of ND was described in marketable chicken farms. Our study was carrying out to isolate some Newcastle virus isolates and using them for vaccine production. 13 Samples which collected from dead birds based on postmortem investigation from poultry farms from different areas were exposed to isolation of NDV in specific pathogenic free embryonated chicken eggs. Detection of this isolates was done by serological tests and electron microscope examination. Identification of viral isolates was done by biological properties, virion properties, antigenic properties and genome organization. From biological properties, the pathogenicity tests, host range and tropisms of Newcastle virus were studied. From virion properties, the effects of some physical and chemical agents on stability of viral isolates were determined. The serological relationships between viral isolates were studied using agar gel precipitation test after injection the velogenic strain in rabbits and antiserum was obtained. Among the properties that have been reliable in the definition of viral isolates it was viral genome properties. The fusion gene was chosen as it is responsible for identifying pathological capacity of Newcastle disease virus strains and it amplified by the polymerase chain reaction and the sequence of nucleotides was studied and the bioinformatics used to analyze the results of the sequence of nucleotides and build the phylogenetic tree. It is the principle that prevention is better than cure, two application experiments were done to raise the immune status of the flock and protect it against infection with Newcastle disease

virus, the first experiment is aims to produce a vaccine from lentogenic strain after inhibited by formalin then infection with the velogenic strain was done. It appeared from the results that, despite all the birds were infected with velogenic strain but the strong importance of the vaccine appeared to prevent mortality among chickens and minimizing clinical and postmortem signs compared with untreated chickens. Our study also was planned to study the effect of some nutrition additives (Yeast, Ginger and Cinnamon) on the chicken challenged with NDV. One hundred and fifty six chicks by one-day old were weighted and casually separated into equivalent three main groups, group 1 (ginger, 1 kg/tons), group 2 (cinnamon, 2kg/tons) and group 3 (Yeast, 8 kg/tons), each group was categorized into four sub group A (control without virus or improver), B (additive only) C (chickens infected + flavor) and D (chickens infected without additive), each one contains thirteen chicks. The chicks were kept in cages, in a room with controlled temperature and air conversation and were providing with light and water was delivered ad libitum. All chicks were reserved on basal diet for two weeks before impurity with NDV. The preservative was added to chicken on basal diet for extra two weeks after injection with NDV (velogenic strain / 8 HAU) in drinking water (3 ml / 100ml). Birds were reserved under daily surveillance. Weight (every week), signs, % mortality were detailed. Blood collected randomly from two birds to describe protein profile. The result presented that all flavors reducing % mortality and aggregate the weight of birds. The cytological investigation of the chickens displayed that there were hemorrhages in trachea, liver, proventriculus and intestine in all sub groups excepting sub group A (Control). All values for globulin were sig. dissimilar (P<0.05) in the three main group. This exposed the capacity of this food additive to influence protection in chickens infected with (NDV).

Key words: Newcastle Virus, viral isolation, Veleogenic, ICPI, IVPI, MDT, haemagglutination inhibition test (HI),

haemagglutination test (HA), food additive, ginger, PCR, vaccine production.

AKNOWLEDGMENT

" Praise and thanks be to ALLAH the most merciful for assisting and directing me to the right way "

My sincere appreciation to the soul of **Prof. Dr. Esmat. Kh. Allam**, Prof. Emeritus of Agric. Virology, Department of Agric. Microbiology, Fac. of Agric., Ain shams University, for his efforts to open new branches in virology school, before his death.

My heartily thanks are due to **Prof. Dr. Khalid A. El-Dougdoug**, Prof. Emeritus of Agric. Virology, Department of Agric. Microbiology, Fac. of Agric., Ain shams University, for supervision, suggesting the problem and valuable advice, unlimited support encouragement during this work and progressive criticism during the study.

I feel most indebted and grateful to **Prof. Dr. Badawi A. Othman**, Prof. Emeritus of Agric. Virology, Department of Agric.
Microbiology, Fac. of Agric., Ain shams University, for supervision, suggesting the problem, his interest, continuous help and issuing this work in the best possible scientific form, and great thank to him for long days of his time that he gave me to complete this work.

Deepest gratitude to **Prof. Dr. Suzan Sayed El Mahdy**, Prof. of virus, Veterinary Serum and Vaccine Research Institute, Abbasia, Cairo, Egypt, for her previous supervision, valuable advice and providing me with polyclonal antiserum for NDV and AIV.

Special thanks are due to **Eng/ Ahmed Mohamed Abd-Elhady**, Head of Department of Poultry Projects, Ministry of Agriculture, for helping me in collection of samples during the study.

My heartily thanks are due to **Prof. Dr. Safwat Hassan Ali**, professor of Agric. chemistry, Fac. of Agric., Ain Shams Univ. For his sincere, encouragement, continuous kindly and support during the study, his truly scientific nature was a continuous source of inspiration for me during the work and his important accurate notices in the part of blood biochemistry.

Special thanks are due to **Dr. Mohamed Abd-El basir**, researcher of virology, faculty of medicine, El Azhar University, for training me on tissue culture technique.

I'm greatly indebted to express my special thank and great appreciation to **Dr. Allam Arafat Megahed**, researcher in National Research Center for unlimited help and constant support and training me on electrophoresis technique.

We also acknowledge the technical support of **Khadra Foad Abdallah** for her efforts for rearing the experimental birds and chickens.

My thanks have to be extended to all my professors' colleagues and all members of virology Laboratory and Agricultural Microbial., Fac. of Agric. Ain Shams Univ. for their Continuous assistance and supplying all Facilities throughout this thesis.

Commence A Electrical DLD Eco. Action Alectromatics (2017)

CONTENTES

	Page
LIST OF TABLES	iii
LIST OF FIGURES	V
LIST OF ABBREVIATIONS	vi
INTRODUCTION	1
REVIEW OF LITERATURE	6
MATERIALS AND METHODS	45
3.1. Material	45
Prepare samples vials:	45
Preparing to take samples	45
Tissue samples	45
Transporting specimens to the laboratory	45
Glycerol medium	46
Phosphate-buffered saline (0.01M), pH 7.2 (PBS):	46
Sterile sand:	47
-Alsever solution:	47
-SPF Embryonated chicken eggs:	47
-Syringe filter:	47
-Antibiotic mixture:	47
- Physiological saline, 0.85% NaCl	48
-Nutrient Agar Medium;	48
-Blood Agar Medium:	48
Chemicals and enzymes used in the molecular assays:	49
1% Agarose:	49
AMV Reverse Transcriptase (AMV RT):	49
TAQ DNA Polymerase (TAQ):	49
Ethidium Bromide (EtBr):	49
Bromophenol Blue (BPB):	50

Xylene Cyanole FF (XC):	50
3.2. Methods	
- Preparation of the infectious viral suspensions:	52
1- Collection of the samples (Diseased birds):	
2. Extraction of the infectious virus from collecting samples:	54
3-Virus isolation	
- Cultivation of virus in embryonated chicken eggs (ECE)	54
I. Examination of embryonated chicken eggs (ECE)	
II. Inoculation of eggs	54
III. Harvesting of Allantoic fluid from inoculated chicken eggs	55
4- Detection of NDV isolates	
A- Detection by serological tests	57
B- Detection by electron microscope examination	60
- Identification of ND virus isolates	<i>c</i> 1
A- Identification by biological properties	61
B- Identification by Virion properties	66
- Effect of physico-chemical agents on the survival of ND virus	
isolates	66
1- Effect of temperature degree and time of exposure to	
temperature on the survival of ND virus isolates	66
2- Effect of extremely pH degrees on the survival of ND virus	
isolates	67
3- Effect of UV light on survival of ND virus isolates	67
4- Effect of some chemical agents on survival of ND virus	
isolates	67
The thermal cycling profile was as follows:	71
- Identification by serological properties	72
- Production of live vaccine against Newcastle virus	74
-Determination of the potential inhibition of some feed additives	
on Newcastle disease virus infection	76
Determination of Total Serum Protein (TSP)	77
Determination of Serum Albumin Level (SAL)	78
The total proteins were calculated as follows:	79
Calculation of Serum Globulin Fractions (SGF)	79
Samar S.A. Ebrahim, Ph.D. Fac. Agric., Ain Shams Univ. (2016)	

RESULTS	80
DISCUSSION	114
SUMMARY	132
REFERENCES	141
ARABIC SUMMARY	

LIST OF TABLES

No.	Title	Page
1.	History of the collected diseased birds used for isolation of Newcastle disease virus (NDV)	53
2.	Scheme for raising NDV antiserum in rabbit immunization	73
3.	Results of cultivation of virus samples in SPF embryonated chicken eggs	82
4.	Titer of virus from allantoic fluid by HA test	84
5.	Titer of virus from allantoic fluid by HI test	85
6.	Determination of pathogenicity of NDV by ICPI	88
7.	Determination of pathogenicity of NDV by IVPI	88
8.	Determination of pathogenicity of NDV by MDT	90
9.	Spectrophotometric data of purified NDV isolates	91
10.	The Host range of ND Virus	93
11.	Effect of NDV on the body weight in Turkey and duck	94
12.	Effect of NDV on Lipid Profile in Pigeons and Turkey	96
13.	Effect of NDV on blood sugar & liver and kidney function	97
14.	Effect of NDV on protein profiles	97
15.	The Tissue Tropism of velogenic NDV isolate	99
16.	Effect of 56°C for different times on the persistence of NDV isolates	99
17.	Effect of 60°C for different times on the survival of NDV isolates	100
18.	Effect of extremely pH degrees for different times on the survival of NDV isolates.	100
19.	Effect of Ultraviolet light on the survival of NDV isolates	101
20.	Effect of formalin on the survival of NDV isolates	102
21.	Effect of sodium hypochlorite on the survival of NDV	102

	isolates	
22.	Effect of 20% chloroform on survival of NDV isolates	103
No.	Title	Page
23.	Effect of 20% ethylether on survival of NDV isolates	103
26.	Results of protection by vaccine against NDV	109
27.	Effect of some food additives on the body Weight (g) on chickens	111
28.	Effect of NDV and food additives on Blood values	112

LIST OF FIGURES

No.	Title	Page
1.	Different clinical and postmortems signs appear on the natively infected chickens	81
2.	Photogram of died inoculated embryos	83
3.	Agar gel precipitation test	85
4.	Chromatographic immunoassay for NDV isolates	86
5.	Photogramme of negatively stained NDV particles	87
6.	Clinical and postmortem signs that appeared in infected birds with NDV isolates	89
7.	UV spectrum of purified velogenic NDV isolate	91
8.	UV spectrum of purified meogenic NDV isolate	92
9.	UV spectrum of purified lentogenic NDV isolate	92
10.	Clinical signs that appeared in infected pigeons	94
11.	Clinical signs that appeared in infected turkey	95
12.	Effect of NDV on Lipid Profile in Pigeons and Turkey	96
13.	Effect of NDV on blood sugar & liver and kidney function	98
15.	Electrogramme of 1.5% agarose gel electrophoresis	104
17.	Phylogenteic relationship between the isolates used in this study and other sequences retrieved from the GenBank	107
18.	serological relationships between the three NDV isolates by using polyclonal antibodies	109
19.	protection by vaccine against NDV	110
21.	Biochemical analysis of blood samples.	113

LIST OF ABBREVIATIONS AND SYMBOLS

APMV : Avian Paramyxovirus

: Day post infection Dpi

: And others et al.,

F : Fusion

Fig. : Figure

: Gram gm

: Hemagglutination HA

Hemagglutination Inhibition HI

ICPI : Intracerebral Pathogenicity Index

: Intravenous Pathogenicity Index IVPI

kbp : Kilobase pair

MDT : Mean Death Time

min : Minute

Milliliter ml

: Newcastle disease ND

Newcastle disease virus **NDV**

nm Nanometer

: Nucleotide nt

OIE : Office des International Epizootic

PBS : Phosphate Buffer Saline

Potential for hydrogen ion concentration pН

pmol Picomole

RBC Red blood cell

RNA : Ribonucleic acid

Rpm: Revolutions per minutes

RT- : Reverse transcription-polymerase chain reaction

PCR

sec : Second

SPF : Specific pathogen free

TAE : Tris – acetate –EDTA- buffer

TEM : Transmission electron microscope

UV : Ultra violet

% : Percent

Mg : Microgram

μl : Microliter

μM : Micromole

°C : Degree Celsius