Study of the heterogeneous Catalytic reactions of Conversion of Cycloalkanes on metal Supported Catalysts in flow system under normal pressure

Thesis

SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

Physical Chemistry

 $\begin{array}{c} \textbf{By} \\ \textbf{Susan Ahmed Hassan Ali} \\ \textbf{(} \textit{B.Se.} \; . \; \textit{M.Se.} \; \textbf{)} \end{array}$

Presented To
Chemistry Department
University College For Girls
AIN SHAMS UNIVERSITY

1984

STUDY OF THE HETEROGENEOUS CATALYTIC REACTIONS OF CONVERSION OF CYCLOALKANES ON METAL SUPPORTED CATALYSTS IN FLOW SYSTEM UNDER NORMAL PRESSURE

THESIS ADVISORS

APPROVED:

Dr. ESAM MOHALED EZZO

Professor of Physical Chemistry

Dr.KHADIGA MAHMOUD

محمر:نر الحرو

Professor Assistant of Physical Chemistry

Dr. NADIA ABD EL-HAKIM

Professor Assistant of Physical Chemistry

Mad-A. Kali

ACKNOWLEDGMENT

I wish to express my deep sense of gratitude to Dr. ESAM LCHALLD EZZO, Professor of Physical Chemistry, University College for Girls, Ain Shams University, for the helpful supervision, his masterly guidance, suggesting the subject of this thesis, and for discussing the results.

I am also grateful to Dr. MALTA ABD EL-HAKIM, Frofessor Assistant, Chemistry Lepartment, for her helpful, keen interest and encouragement.

I am greatly indepted to Dr.KHALIGA L. Professor Assistant, Chemistry Department for Following the progress of the work.

I would like to offer my great respect to Professor SALEH AMAD, Head of Chemistry Department, University College for Girls, Ain Dhams University, for his contineous Co-Operation .

Finally, I should not forget to express my sincere thanks to all members of Chemistry Lepartment for their kind Co-Operation and Friendship.

5

" TO THE SPIRIT

OF MY FATHER"

CONTENTS

I. LITERATURE :	Page	
I.A. The Mechanism of Catalytic Conversion of		
Rethylcyclohexane	1	
I.B. The Mechanism of Heterogeneous Catalytic		
Lehydrogenation of Cyclonexane	б	
I.C. The Lechanism of Heterogeneous Catalytic		
Lisproportionation of Cyclohexene	15	
I.L.(i) Joke Formation	20	
I.U.(ii) The Change of the Properties of the		
Catalyst Luring Catalytic Processes	22	
I.E. Kinetics of Heterogeneous Catalytic Reactions		
in Flow System	25	
Aim of Work	31	
II. EXPERIMENTAL:		
II.A. Starting Materials and Catalysts	32	
II.B. Apparatus and Techniques	37	
II.C. Kinetic Study of Heterogeneous Catalytic		
Reactions of Conversion of Cyclohydrocarbons	56	
III. RESULTS :		
III.I.A. Kinetic Studies of the Conversion of Methyl-		
cyclohexane Over CuO/Al ₂ O ₃ Catalyst (A) In		
May Systam	65	

•	Page
IV. LISCUSSION	. 271
v. conclusion	305
VI. REFERENCES	308
WIT ARISTA SHI NOV	

LITERATURE

CHAPTER I

INTRODUCTION

I.A. The Mechanism of Catalytic Conversion of Methylcyclohexane:

The formation of aromatic hydrocarbons by the catalytic dehydrogenation of saturated six-membered ring is a well known reaction. The transition metals and their oxides are active catalysts for such dehydrogenation reactions.

The two (1) known basic modes of methylcyclohexane decomposition that can take place simultaneously over metal oxide catalyst are:

- a) dehydrogenation to form toluene .
- b) dehydrodemethylation to form benzene..

$$(1) \qquad (11) \qquad (111) \qquad (14) \qquad (4)$$

$$(1) \qquad (4) \qquad (4)$$

$$(4) \qquad (4) \qquad (4)$$

$$(5) \qquad (4) \qquad (4)$$

$$(1) \qquad (4) \qquad (4)$$

$$(1) \qquad (4) \qquad (4)$$

$$(4) \qquad (4)$$

$$(4) \qquad (4) \qquad (4)$$

$$(4) \qquad$$

According to the multiplet theory of catalysis the dehydrogenation of hydrocarbons was treated as a free radical mechanism which is supported by Zelinskiy (2).

Control Library Ain Shame University

The multiplet theory considered that the- CH_2 parts of the molecule get into the deepest valleys, this must lead to an activated adsorption which is often accompanied by the break of a bond .

In 1960 Hurwitz and others (3) studied the kinetics of methylcyclohexane dehydrogenation over Pt/Al203catalyst at 315 - 372°C, and at methylcyclohexane partial pressure ranging from 0.07 to 2.2 atms., and hydrogen pressure ranging from 1.1 to 4.1 atms. The reaction was zero order with respect to methylcyclohexane and hydrogen. The activation energy for the reaction was 33 Kcal/mole . The near zero order behaviour of the reaction suggests that the active sites of the catalyst are almost completely covered with adsorbed hydrocarbon molecules or radicals formed from the methylcyclohexane . Since the adsorpotion of methylcyclohexane probably involves dissociation of hydrogen from the molecule, thus increasing hydrogen pressure, and reducing the concentration of the adsorbed species, which results a decrease in the rate of toluene formation .

It is suggested that the active sites of the catalyst are heavily covered with adsorbed toluene, which is then desorbed from the surface, and that the reaction rate corresponds to the rate of desorption of toluene. It is supposed that the rate determining step is the rate of toluene desorption.

In 1965, Balandin explained the dehydrogenation of methylcyclohexane using a flow system over a catalyst composed of 82 % ${\rm Al_20_3}$, 3 % ${\rm K_20}$, and 15 % ${\rm Cr_20_3}$ at 470 - 520°C, the activation energy was 17.3 Kcal/mole.

Accordining to the multiplet theory; the extra-index parts of the molecule, do not change on catalysis and do not influence much the course of the reaction i.e. the substituted cyclohexanes as become evident from kinetic research $^{(5-6)}$ are dehydrogenated, similarly to cyclohexane itself with very similar activation energies. This suggests an edgewise orientation of the ring, the index group pointing toward the catalyst. Thus on Cr_2O_3 for cyclohexane, methylcyclohexane, and 1,3-dimethylcyclohexane the activation energy is equal respectively to 25.9, 23.7 and 22.2 Kcal mol⁻¹.

Reaction with added C¹⁴, methylcyclohexane was shown to take place without any hydrogenation of methylcyclohexane or toluene; no evidence for irreversible catalytic change of methylcyclohexane was found. The rate of dehydrogenation of methylcyclohexane and methylcyclohexane were very close to each other.

David, Burton (7) investigated the dehydrogenation of methylcyclohexane over Pt-Al₂O₃ catalyst by using C¹⁴ tracer. It was found that the C¹⁴ distribution in the products shows that methylcyclohexane is converted primarily to aromtic compound. Dehydrogenation to toluene and demethylation to benzene occurs by a metal catalyzed pathway. Conversion of the aromtics (or naphthalene) to paraffins occurs by a dual-functional metal-acid pathway.

The direct degradation dehydrogenation was also studied by many authors (8,9). It was suggested that the formation of C₆H₆ and CH₄ in the dehydrogenation of cyclohexane ring of methylcyclohexane were due to C - C bond rupture at 280 - 400°C. The main products were methylcyclohexane isomers and toluene. The rate determining step in dehydrogenation of methylcyclohexane was the formation of methylcyclohexane was the formation of methylcyclohexane. Corma et al (10) in (1980) studied the kinetics for the dehydrogenation of methylcyclohexane to toluene over Pt on Na Y zeolite at 340 C° and

l atm. Cumulative conversion data yielded rate constants for both dehydrogenation and catalyst decay. The reaction occurs via a series of consecutive paratial dehydrogenations, the first dehydrogenation being the rate determining step.

The kinetics of the dehydrogenation of methylcyclohexane over Na Y zeolite containing 5 wt. % Pt as a catalyst was studied in the presence of hydrogen by lopez (11) in a flow system at 350 - 390 C and atm. pressure. The results were analyzed by the Hougen watson method and indicate a rate determining surface reaction (two equal sizes) and a step-wise mechanism.

In 1981, Corma, A., Agudo (12) studied the isomerization, dehydrogenation and cracking of methylcyclohexane over HNA-Y zeloites. It was found that the fractions of acid sites which are active for the above reactions do not increase linearly with increasing degree of exchange. Isomerization and dehydrogenation involve a similar activated complex; cracking proceeds through a different activated complex and requires stronger acid sites. Activation energies are independent of exchange degree.

I.B. The Mechanism of Heterogeneous Catalytic Dehydrogenation of Cyclohexane:

One of the essential problems in heterogeneous catalysis is studied by means of the undisturbed analysis and throught the description of the reaction intermediates . In the recent years, new techniques have lead to conceivable principles which permit a reaction to be described as a " radical mechanism " or a " carbonium ion mechanism " These classifications are still insufficient for predicting catalytic systems . A more detailed explanation of surface reactions is still far from being complete, and the prediction of catalytic mechanisms in terms of molecular action faces numerous uncertainties. Evidently, reaction intermediates are described primarily as chemical entities with definite chemical composition . Moreover, the degree of intramolecular excition and the behaviour of molecular energy exchange as an intermolecular property are decisive . Since these fundamental questions of excitation are generally unknown even for homogeneous reactions, investigations in heterogeneous catalysis have first to be restricted to simple structural problems of intermediate compositions .

The dehydrogenation of cyclohexane (II) is one of the catalytic reactions with numerous contradictory statements.