JUVULE 1

CONTROL OF DC MOTORS BY CHOPPERS

A THESIS.

SUBMITTED TO

THE FACULTY OF ENGINEERING

AIN SHAMS UNIVERSITY

IN PARTIAL FULFILMENT FOR THE MASTER OF SCIENCE

IN

ELECTRICAL ENGINEERING

(.621.3135 F-A

BY

ENG. FIKRY ABDEL FATAH IBRAHIM yourself

2.568

SUPERVISED BY:

PROF. DR. ELSADIK AMIN KANDIL DR. DEYAA EL — KOSHAIRY

DR. MAHMOUD SERRY TAHA

TO MY DEAR PARENTS, WIFE AND CHILDREN.

EXAMINERS

Prof. Dr. FAROUK ISMAEIL AHMED Faculty of Engineering, Cairo University.

Prof. Dr. ABD EL-FATTAH KHIR EL-DIN Faculty of Engineering, Ain Shams University.

Prof. Dr. EL SADEK AMIN KANDIL Faculty of Engineering, Ain Shams University.

ACKNOWLEDGMENTS

The author is indebted to those kind people who helped him in this work and wishes to express his deep gratitude to all of them especially Professor Dr. El-Sadek A. Kandil, Head Supervisor and Head of Electrical Engineering Department, Ain Shams University, for his continuous support, and encouragement. Sincere thanks go to Dr. A. Deyaa El-Koshairy, one of the most active members at the Same Department, for his great assistance and kind advice in both theoretical and experimental work. Dr. El-Koshairy supervised and reviewed each little detail of this work. Thanks also are due to Dr. Mahmoud Serry Taha, Egyptian Electricity authority for his support and encouragement. The author wishes to express his appreciation to Mr. Ali El-Naggar, development & Research Engineer, Heliopolis Company for Housing and Mr. Ibrahim M. Abbass, Senior Supervisor, Cairo Destribution Electricity Company for their co-operation and help throughout the implementation of the experimental model. Mr. Gamal Y. Iraq, Development Engineer, Egyptian Armed Forces, deserves Special Mention for preparing the drawings for the manuscript of this thesis.

ABSTRACT

The dynamics of a separately-excited chopper-fed dc motor are investigated. Constant field-current dc motor is particularly chosen for this study. The input to the system is a chopped armature voltage and hence, a variable dc armature voltage is obtained and the speed can be changed in accordance.

Pulse-width modulation is employed owing to its advantages over the variable-frequency modulation. The mark/space ratio is varied assuming several constant rates, starting from a minimum value governed by the minimum time necessary for the commutating capacitor to ensure successful commutation, and up to a maximum value which is the continuous do rated voltage. The motor electric equation and the equation of motion, assuming different loading conditions, are solved on a digital computer. A program simulating the system comprising the motor and chopper is completely described. Hamilton's technique is considered for the mathematical analysis. A complete model of a dc chopper with commutating and firing circuits has been built, tested and used to supply the separately-excited dc motor used in the experimental work. Experimental results are obtained and compared with the theoretical results and conclusions are derived.

CONTENTS

		Page
CHAPTER	I INTRODUCTION.	
	1.1 General	1
	1.2 Solid State D.C. Power Converter	2
	1.3 Types of Static dc Voltage Controller	2
	1.3a Controlled-Voltage dc Bridge	2
	1.3b DC Chopper	4
	1.4 Principle of Operation	4
	1.5 Mark/Space Ratio	6
	1.6 Step up Chopper	7
	1.7 Chopper Configuration	8
	1.8 Regenerative Braking Mode of Operation .	1 2
	1.9 Multiphase Choppers	15
	1.10 High Voltage Choppers	16
CHAPTER	II COMMUTATING CIRCUITS	
OHRILIM	2.1 General	17
	2.2 Types of Commutating Circuits	18
	2.2.1 Load commutating circuits	19
	2.2.2 Forced commutation	19
	a) Current commutation of choppers.	20
	i) Parallel-capacitor induc-	20
	tor commutation	20
	ii) Margen's circuit	21
	b) Voltage commutation of choppers.	
	i) Series capacitance	
	commutation	22
	ii) Parallel capacitance	- 4-
	commutation	24
	iii) External pulse commutation.	24
	2.3 Choice of a Chopper Circuit	26

		Page
2.4	Protection of DC Choppers	27
	2.4.a Over current protection	28
	2.4.b Protection against dv/dt False	
	turning on	30
	2.4.c Over voltage protection	30
	2.4.d Gate protection	31
2.5	Cooling and Heat Sink	32
CHAPTER III	PROBLEM FORMULATION AND ASSUMPTIONS.	
3.1	General	36
3.2	Armature Voltage Control	36
3.3	Open Loop Control	37
3.4	Closed-Loop Control	39
3.5	Series Motor Control	39
3.6	Assumptions	41
3.7	Nomenclature	42
CHAPTER IV	MATHEMATICAL ANALYSIS.	
4.1	Description	44
4.2	Steady State Analysis	45
	4.i.i Continuous current mode of	17
	operation	45
	4.i.ii Discontinuous operation	47
4.3	_	49
4.4		51
4.5	Cayley-Hamilton Technique	54
4.6	Computer Program	57
	4.6.1 Outlines of computation	5 7
	4.6.2 Sequence of computation	58
	4.6.3 Flow chart	59
	4.6.4 Theoretical results	61

	•	Page
CHAPTER V	EXPERIMENTAL WORK.	
5.1	Description	68
5 .2	Analysis of the Chopper Operation	68
5 .3	Advantages	73
5.4	Determination of Commutating Components	
	L and C	73
5.5	Design of Chopper Circuit Components	77
5.6	The Input Filter	81
5.7	Application	86
5.8	The Firing Circuit	87
5.9	Experimental Result	91
CONCLUSIONS		94
APPENDICES	• · · · · · · · · · · · · · · · · · · ·	95
REFERENCES		100
ARABIC SUMM	ARY	

CHAPTER I

INTRODUCTION

1.1 General

The direct current motors are being extensively used as variable speed drives in many industrial applications. The variation of dc motor speed is, in most cases, required. For example, printing machines, rolling mills, paper mills, traction systems and many other industrial applications are operating at variable speeds. This requires variable dc voltage levels to be applied across motor terminals in order to obtain a variable speed. The three classical methods being employed in varying the dc motor speed are; armature voltage control, rheostatic control and field-current control.

In armature voltage control, a motor-generator set is used, the output voltage can be varied by controlling the field-current of the dc generator. However, three electric machines of the same power raing have to be used. This, in turn, makes the system bulky, inefficient, costly and slow in response. In the rheostatic control method, a series variable resistance is inserted in the motor armature circuit. The disadvantages are; the large power-loss in the added resistance, which in some cases exceeds 40% of input power, besides the slowness of the system in response. Finally, in field-current control method, although it is a simple way to change motor speed, but while changing speed, the motor torque also changes. Therefore,

this method is most suitable in constant power applications. The disadvantage is the slow response due to field circuit time delay.

1.2 Solid-State dc Power Converters

A reliable thyristorized dc voltage controller has been developed since the last two decades. evolution of integrated circuits and digital electronics made the solid-state dc power converters more accurate and reliable. As it will be seen later, these types of converters have overcome all disadvantages of armature voltage control using motor-generator sets, rheostatic control and field-current control methods mentioned In other words, the solid-state dc power converters are now being used widely in industry and traction systems since they are economical (due to their greater efficiency), faster in response, reliable. offering accurate control, need minimal maintenance, have lower size and weight and noise-free. In addition, these converters can be used in controlling a considerably large number of dc motors from a common dc bus.

1.3 Types of Static dc Voltage Controller

1.3.a Controlled-voltage do bridge

It can be either of the single or three phase type.

i) Single Phase Bridge

It is used with small do motors and can be either of the fully-controlled or half-controlled type.

Fully-controlled bridge is chosen and shown in Fig. (1.1). Thyristors TH1, TH2 are fired simultaneously in one-half cycle, while TH3, TH4 are fired simultaneously in the other half-cycle. If \approx is the firing angle, thus the mean output voltage, assuming a continuous current mode, is:

$$V_{o} = V_{mean} = \frac{2 V_{max}}{\pi} \cdot \cos \infty \tag{1.1}$$

Provided that the thyristor voltage drop is neglected.

11) Three-Phase Bridge

It is used with large dc motors, Fig. (1.2).

The mean output voltage across the load, assuming continuous current mode, is:

$$V_0 = V_{mean} = \frac{3 V_{L(max)}}{\pi} \cdot \cos \pi$$
 (1.2)

If a commutating diode is connected across the motor,

$$V_0 = \frac{3 V_L \text{ (max)}}{2 \pi r} (1 + \cos \alpha r)$$
 (1.3)

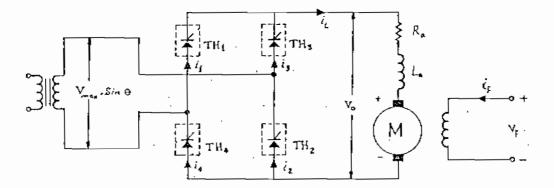


Fig. (1.1) Single-phase fully-controlled bridge feeding dc motor.

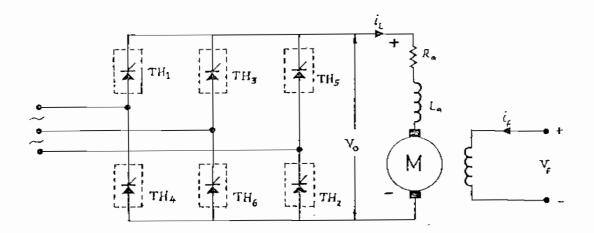


Fig. (1.2) Three-phase fully-controlled bridge feeding dc motor.

1.3.b DC Choppers:

DC choppers convert directly from one dc voltage level to another dc voltage level. They are used in dc traction systems and as an intermediate stage of voltage inverters. Their applications have a wide range, moreover, they can provide regenerative braking of dc motors by returning the stored energy back to the supply. DC choppers can be employed to supply both separately excited and dc series motors. This thesis is devoted to the speed control of the separately excited dc motor using a dc chopper.

1.4 Principle of Operation

In Fig. (1.3a), if thyristor TH1 is turned on and off in succession, the load voltage $e_{\rm o}$ will have rectangular pulses as shown. The average output voltage $E_{\rm o}$ can be obtained as follows:

$$E_{O} = E \cdot \frac{T_{ON}}{T} = \sim E \qquad (1.4)$$

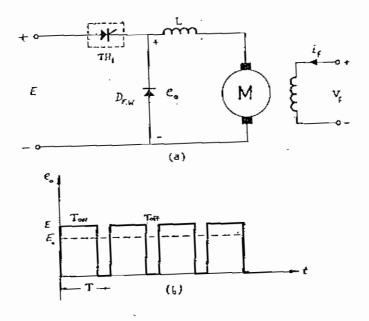


Fig. (1.3) Principle of operation.

a) Circuit.
b) Output and average voltage.

where:

 T_{ON} = ON-time of the thyristor, seconds.

 $T_{\text{off}} = 0$ ff-time of the thyristor, seconds.

 $T = T_{ON} + T_{off} = periodic time of the chopper.$

 $\approx = \frac{T_{ON}}{T} = \text{duty cycle, dimensionless and,}$

E = the supply voltage, volts.

It should be noticed that a thyristor drawn inside a rectangle indicates that the thyristor is complete with its commutating circuit.

The output and average voltages are shown in Fig. (1.3b). The function of the free-wheeling diode $D_{F_{\bullet}W_{\bullet}}$, is to permit the flow of motor current when the thyristor is turned off with an inductive load.

Complete chopper circuit consists of the following four parts:

- DC power source, which may be either a battery or an ac-to-dc converter.
- Commutating circuit which turns the main thyristor off at the desired instant.
- Power circuit which transmits power from the do source to the load and,
- 4. Controller and trigger circuit which controls the power delivered to the load.

1.5 Mark/Space Ratio

The duty cycle \approx , and hence the mark/space ratio can be varied in one of the following ways:

a) Constant frequency system: f = 1/T

In this system, the chopping period T (and hence the chopping frequency f) is kept constant while the on-time $T_{\rm ON}$ is varied. The system may also be called "pulse width modulation".

b) Variable frequency system:

In which, the chopping period T is varied while either the on-time $T_{\rm ON}$ is kept constant or the off-time $T_{\rm off}$ is kept constant. The system may be called "frequency modulation" and it does suffer from the following disadvantages:

i . The possibility of interference with signalling and telephone-lines, is greater than that expected in constant frequency system.