EFFECT OF COBALT ON THE GROWTH AND MINERAL COMPOSITION OF PLANT

BY

NADIA GAD EL-RAB SHEHATA

A thesis submitted in partial fulfillment

of

the requirments for the degree of

MASTER OF SCIENCE

IN

Agriculture

(Soil Science)

24776

Department of Soil Science
Faculty of Agriculture
Ain Shams University

1989

Approval Sheet

EFFECT OF COBALT ON THE GROWTH AND

MINERAL COMPOSITION OF PLANT

BY

NADIA GAD EL-RAB SHEHATA

EFFECT OF COBALT ON THE GROWTH AND MINERAL COMPOSITION OF PLANT

BY

NADIA GAD EL-RAB SHEHATA

B.Sc. Agric., (Horticultural Dept.) Ain Shams Univ., (1982)B.Sc. Agric., (Soil Science Dept.) Ain Shame Univ., (1985)

Under the Supervision of : Prof. Dr. Talaat M. El-Kobbia

Prof. of Soil Science Dept. Ain Shams University.

ABSTRACT

This research was carried out on tomato (Lycopersicon esculentum Mill. cvs UC 97) and squash (Cucurbita pepo cvs Eskandarani) plants under glasshouse and / or lath-house conditions at the winter and spring time of 1987-1989. Experiments were conducted in 3 main parts which are summerized as follow:

PART I EFFECT OF COBALT ION ON TOMATO PLANT GROWTH AND MINERAL CONTENT

Supplementing the nutrient solutions in which tomato plants were grown with 0.25 ppm of Co ion, induced plant shoot and root growth. Increasing Co concentration in the growing media up to 0.5 ppm, eliminat the possitive effect of 0.25 ppm of Co treatment on plant growth. All parameters of plant growth significantly reduced as Co concentrations rose above 0.5 ppm, while catalase and peroxidase enzyme activities significantly increased. Symptoms of chlorosis started to appear on plant upper or new leaves at 0.5 ppm of Co application and clearely increased as Co cencentrations increased. While plant content of Co, Mn and Zn increased significantly with increasing Co concentration in the growing media, Fe content strongly reduced. Doubling Fe concentration in the nutrient solution with the presence of 0.5 ppm Co, eliminates upper leaves chlorosis and increases plant shoot and root content of Fe with a great reduction in Co content. It is indicated from these data that Fe and Co are competitive elements in tomato plant nutrition and the appearance of chlorosis on the upper leaves under high levels of Co application is due mainly to iron deficiency.

PART II EFFECT OF COBALT ION ON THE FORMATION, GROWTH AND DEVELOPMENT OF ADVENTITIOUS ROOT IN TOMATO AND SQUASH SEEDLINGS

Adventitious root formation on tomato cuttings (excised shoots of the seedlings) were totally inhibited with the

application of anti-ethylene biosynthesis (1 mM AOA or 2mM Co) or action (2 mM STS). Overcoming the inhibitory effect of AOA application were obtained with 200 ppm of ethryl application. Increasing ethryl concentration up to 250 ppm induced adventitious root formation on the hypocotyl and prevented its formation on the epicotyl. Auxin application of AOA treated tomato cuttings however, induced adventitious root formation only on the epicotyl. It seems that C_2H_4 has an important role on auxin action and transport and subsequently on its effect on adventitious root formation. Ethryl application of 200-500 ppm increased adventitious root number on squash cuttings to about 8-10 fold in comparison with that of control. It is concluded from these data that C_2H_4 is an essential hormone in the formation of adventitious root and it is controlling auxin effect.

Supplementing the nutrient solution with 0.25 ppm Co induced adventitious root formation on tomato and squash cuttings and increased ${\rm C_2H_4}$ production by both plants. Increasing Co concentration to 0.5 ppm caused further stimulation in adventitious root formation and growth as well as ${\rm C_2H_4}$ production by squash plants. When Co concentrations rose above 0.5 ppm, advetitious root formation and ${\rm C_2H_4}$ production were strongly reduced in both plants. These data showed that the formation of adventitious root is parallel to plant ${\rm C_2H_4}$ production and low levels of Co application induced ${\rm C_2H_4}$ production while high levels inhibited it.

Rising basal levels of ${\rm C_{2}^{H}_{4}}$ in squash seedlings with Co application to that of untreated tomato seedlings increased the percentage of successful transplanting from 12 to 100%. These data strongly suggest that transplanting failure in some plant species is mainly due to their low levels of basal ${\rm C_{2}^{H}_{4}}$.

PART III EFFECT OF COBALT ION ON TOMATO AND SQUASH PLANTS WATER BALANCE

Supplementing the nutrient solutions in which tomato and squash cuttings (excised shoots of the seedlings) were grown with 0.00 , 0.25 ,0.50 and 1.00 ppm of Co reduced water loss of both plants. This reduction increased significantly by about 40to 70 % with increasing Co concentrations up to 0.5 or 1.0 ppmrespectively. Cobalt application caused a remarkable increase in the percentage of stomatal closure in either tomato or squash leaves by about 79 or 62 % respectively. Analyzing ABA content in both plants showed that as Co concentrations increased in the nutrient solutions, plant shoot and root content of ABA increased significantly . Auxins and gibberellins levels however, were significantly reduced with high levels of Co application. Ethylene production were strongly reduced in both plants with the application of 1 ppm Co and caused a remarkable reduction in the epinasty of squash cotyledon leaves than natural epinasty degree. Reducing natural epinasty degree of the leaves may reduce direct exposure of the leaves to sun light which may reduce plant water loss. It is evident from these data

That ABA strongly induces plant stomatal closure even with the remarkable reduction of $C_{2}^{H}_4$ occured with 1 ppm of Co application. These data strongly suggest that Co application induces plant stomatal closure through increasing ABA levels and reduces natural epinasty degree of the leaves by reducing basal levels of $C_{2}^{H}_4$ and these changs were behined the significant reduction in plant water loss .

DIDICATION

AS A DEED OF THANKFULNESS AND GRATITUDE,

I DEDICATE MY THESIS TO THE NAME

OF THE RIGHT HONOURABLE THE LATE

PROFESSOR TALAAT EL-KOBBIA UNDER

WHOSE KIND CARE AND SUPERVISION IT WAS DONE

ACKNOWLEDGMENT

I wish to express my deep sense of gratitude, to prof. Dr. Talaat El-Kabbia, prof. of Soil Science Dept., Faculty of Agric. Ain Shams Univ., for supervising and planning this research, as well as his valuable guidance, continuous advice and encouragement.

I would like to extend my sincere gratefulness, to Dr. Mordy A. Atta-Aly, Assis. Prof. Horticultural Dept., Faculty of Agri., Ain Shams Univ., for his supervising as well as his guiding thoughts, beside his step by step practical sharing by which this thesis has came to be in this form.

Thanks are also due to Dr. Adel .S. El-Beltagy, Prof. of Vegetable Crops, Horticultural Dept., Faculty of Agric., Ain Shams Unive., for facilities offered through his office.

I am also grateful to prof. Dr.Mohamed N. El-Awady prof., of Agric., Engineering, and Head of the Soil Science Dept., Ain Shams Univ.

I am grateful to prof. Dr. Fahd El-Abbasy Prof., of Soil Science Dept. Ain Shams Univ., for his help and encouragement.

I have to express my deep thanks to prof. Dr. Mamdouh H. Abbas, Prof., of Fruit Crops, National Research Center for his great help.

CONTENTS

	Page
LIST OF TABLES	
LIST OF FIGURES	1 - 2
LIST OF PHOTOPRINTS	3 - 4
	5 - 6
INTRODUCTION	7
1 REVIEW OF LITERATURE	
I 1 Effect of cobalt ion on tomato plant growth	
and mineral content	0
I 2 Effect of cobalt ion on formation, growht	8 - 11
I. 3 Effect of cobalt ion on tomato and sqash	12 - 15
water balance	
	16 - 18
II MATERIALS AND METHODS	
II 1 Effect of cobalt ion on Tomato and squash water balance	
	19 - 21
a. Plant Material	19
D. Cobalt Treatments	19
c. Growth Analysis	2 0
d. Minerals Determination	20
e. Chlorophyll Measurments	20
1. Determination of Peroxidase and Catalase	2.0
Enzyme Activities	21
g. The Chlorosis Recovery Experiments	21
II 2 Effect of cobalt ion on the formation,	
Growth and Development of Adventitious root	
in Tomato and squash seedlings	22 - 25
a. Treatment of Tomato Cuttings	22
b. Ethylene Inhibitors and Ethryl Treatments	23

	Page
c. Treatments of Squash Cuttings	2 4
d. Parameters of Adventitious Root Growth	25
e. Measuring Ethylene Production	26
II 3 Effect of Cobalt ion on tomato and squash	
plants water balance	26 - 30
a. Measurments of Water Consumption by	
Volumetric Method	28
b. Measurments of Water Loss by Weight	29
c. Stomata print	29
d. Measurments of Auxins, Gibberellins	
and Abscisic acid	30
III RESULTS AND DISCUSSION	
III 1 Effect of Cobalt ion on tomato plant	
growth and mineral content	31 - 45
III 2 Effect of Cobalt ion on the formation,	
growth and development of adventitious root	
in tomato and squash seedlings	46 - 58
III 3 Effect of Cobalt ion on tomato and equash	
plants water balance	59 - 70
IV SUMMARY AND CONCLOSIONS	71 - 75
IIV REFERENCES	76 - 84
IIIV ARABIC SUMMARY AND CONCLUCTION	

LIST OF TABLES

Part	Number	Title	Page
Ι	l a	Effect of supplementing the nutrient solutions with	
		cobalt ion on the growth of tomato plants	
		(Frist season)	34
	1 ь	Effect of supplementing the nutrient solutions with	
		cobalt ion on the growth of tomato plants	
		(Second season)	35
	2	Effect of supplementing the nutrient solutions in	
		which tomato plants were grown with cobalt ion on	
		plant shoot and root content of Co, Fe, Mn and Zn	
		one month after application	
	3	Effect of supplementing the nutrient solutions in	36
		which tomato plants were grown with cobalt ion on	
		shoot's apical part content of Fe and Co one month	
		after application	
	4	Effect of doubling iron content in cobalt	37
		supplemented nutrient solutions in which tomato plants	
		were grown on plant shoot and root content of Fe and	
		Co one month after application	20
			38

Part	Number	Title	Page
II	1	Effect of dipping the stem (hypocotyl and epicotyl)	
		of tomato cuttings in ethryl for 15 minuts on the	
		formation and growth of adventitious root	51
	2	Effect of dipping the stem (hypocotyl and epicotyl) of	
		tomato cuttings in auxin or ethryl for 5 seconds or 15	
		minuts respectively on the formation and growth of	
		adventitious root. Cutting were stem dipped for one	
		hour in ${\rm H_20}$ or 1 mM AOA or 2 mM STS one day before 500	
		ppm of auxin or 200 ppm of ethryl application	5 2
	3	Effect of dipping the stem (hypocotyl) of squash	
		cuttings in IBA or ethryl on the formation and growth	of
		adventitious root for 5 seconds or 15 minuts respectively	
III ;	1	Effect of supplementing the nutrient solutions in which	
		tomato and squash cuttings were transplanted with cobalt	
		ion on stomatal closure one week after transplanting 6	2

LIST OF FIGURES

Part	Numbe	Title	Page
	· · · · · · · · · · · · · · · · · · ·		
1	1	Effect of supplementing the nutrient solutions in which	
		tomato plants were grown with Co ion on plant fresh	
		weight, dry weight and %dry matter one month after	
		application	39
	2	Effect of supplementing the nutrient solutions in which	
		tomato plants were grown with Co ion on catalase and	
		peroxidase enzyme activities one month after application	4 0
	3	Effect of supplementing the nutrient solutions in which	- 0
		tomato plants were grown on chlorophyll content of lower	
		and upper leaves one month after application	1 2
	4	Effect of doubling iron content in Co supplemented	• •
		nutrient solution in which tomato plants were grown on	
		chlorophyll content of lower and upper leaves one month	
		after application	
11	1	Effect of supplementing the nutrient solutions in which	3
		tomato and squash cuttings were grown with cobalt ion	
		on plant ethylene production	
III	1	Effect of supplementing the nutrient solutions in which	4
		squash cuttings were transplanted with cobalt ion on plant	
		water consumption	
		63	i