

STUDIES ON THE BIOLOGICAL AND BIOCHEMICAL ACTIVITES OF CERTAIN STREPTOMYCES STRAINS ISOLATED FROM EGYPTIAN SOIL

Hala Mohamed Rifaat AbdEl-Hamid AbdEl-Hady

National Research Centre

u 8549V

Submitted For The Degree Of

M.Sc.

589.92 H. M

MICROBIOLOGY

Ain Shams University Faculty Of Science

1992

ACKNOWLEDGEMENT

First and foremost I feel always indebted to GOD, the most kind and the most merciful.

The author is greatly indebted to Prof. Dr. Mohamed Ramadan Abu Shady, Professor of Microbiology, Faculty of Science, Ain Shams University, for his kindly supervision, valuable suggestion, sincere interest in the problem, discussing the results, encouragement and help in writing and presenting the thesis.

She is also deeply grateful to Prof. Dr. Amira Ahmed El-Gammal,

Professor of Microbiology, Microbial Chemistry Department, National Research Centre, for her suggesting the topic of this thesis, supervising the whole experimental work and guiding the writing of thesis.

Gratitude is, also due to Dr. Fawkia M. El-Beih, Assistant Professor of Microbiology, Faculty of Science, Ain Shams University, for her kindly supervision, her help in writing and presenting the thesis and her valuable advice throughout.

Thanks are extended to **Prof. Dr. Mohamed Tawfec Omar**, Professor of Chemistry, Faculty of Science, Ain Shams University, for his help in structure elucidation of the antibiotic.

Thanks also to all colleagues at the laboratory of Microbial Chemistry, National Research Centre, for their help and support the work especially to Mr. Ibrahem Hagdy Kamal.

PREFACE

Species of the genus Streptomyces were the subject of intensive research in the world. Volunteers of new antibiotics have been carrying out screening programs for the isolation of producers of new antibiotics, among thousands of isolates, obtained from natural habitats. These efforts led to the description of many new streptomyces species and many of new antimicrobial substances. The majority of these substances are antibacterial antibiotics where antifungal antibiotics are less common.

The fact that antibiotics are very heterogeneous in chemistry, origin and structure makes studies of their biogenesis very difficult. With the development of streptomyces taxonomy species of streptomyces had been differentiated into 6 colour sections.

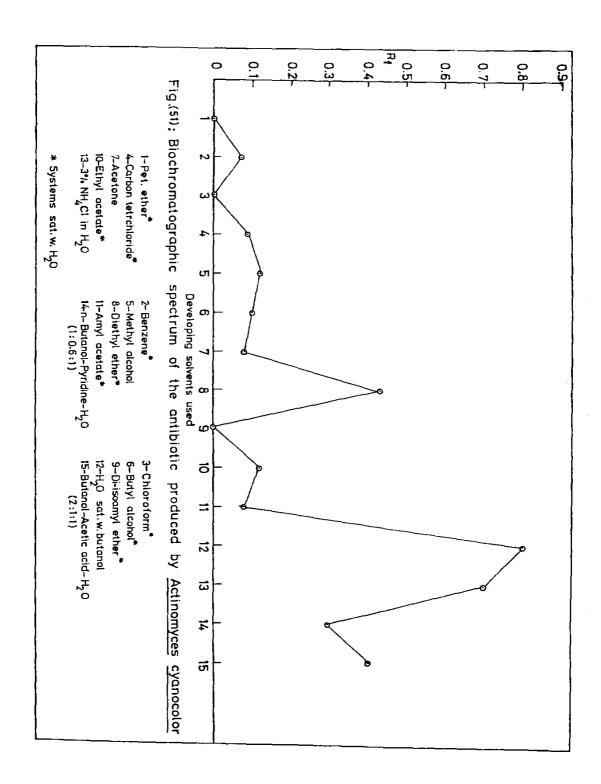
The present thesis deals with 43 isolates belonging to the "Gray" series. The study covers the biological, physiological and antimicrobial potentialities of the isolates.

Special interest has been paid to one single isolate that proved to be a strong producer of an antibacterial, an-

tiyeast and antifungal antibiotic. The extraction, purification, characterization and identification of this antibiotic were done.

CONTENTS

	Page
ACKNOWLEDGEMENT	_
PART I	
A. INTRODUCTION	1
- Historical Review	1
- Biological Characteristics of Species of the Genus	2
Streptomyces	
1. Morphological characteristics	2
2. Cultural characteristics	3
3. Antagonistic characteristics	3
4. Physiological characteristic	4
- Taxonomical Identification of Streptomyces Species	5
- Gray Streptomyces Species	7
- Nutritional Requirement and Cultural Conditions for	
Antibiotic Production	7
- Effect of Lipids on Antibiotic Production	12
- Biochemical Activities of Genus Streptomyces	15
1. Production of antibiotics	15
2. Assay of antibiotics	16
a] Biological methods	16
i. Diffusion methods	16
ii. Dilution methods	16
b] Chemical methods	17
cl Physico chemical methods	17


d] Bio-autographic methods	17
i. Bio-paper chromatographic methods	17
ii. Bio-thin layer methods	18
- Classification of Antibiotics	18
B. MATERIAL AND METHODS	22
- Media Used	22
- Soil Samples	27
- Isolation, Purification and Maintenance of the Grey	
Streptomyces	27
- Identification of the Isolates	28
- Biological Properties	29
1. Morphological characteristics	29
2. Electron microscopy of spores	29
- Cultural Properties	30
- Physiological Properties	30
1. Production of melanin pigments	30
2. Carbohydrates utilization	31
3. Production of H2S	31
4. Starch hydrolysis	31
- Antimicrobial Potentialities	32
1. Antibiotic production in solid agar cultures	32
2. Antibiotic production in liquid shaken culture	33
3. Assay of antibiotic	33
i. Biological assay	33
ii. Biochromatographic spectrum	34
- Phospholipid Supplementation	34

PART II

EXP	ERIMENT	ľAL	RES	ULTS	S	• • •		• • •		• • •		• • •	• • •	36
-	Biolog	jica	al a	nd 1	axon	omic	al	Char	acte	rist	ics	of	the	
	Studie	ed s	Stre	pton	nyces	5								36
-	Group	1 .								• • •	• • •			42
-	Group	2 .								• • •				47
-	Group	3 .	· • •											52
-	Group	4 .								• • •				57
-	Group	5.								• • •				62
-	Group	6 .	 .											67
-	Group	7.						• • •	• • •		• • •			72
-	Group	8				• • •					• • •		• • •	77
-	Group	9.			• • •	• • •								82
-	Group	10				• • •					• • •			87
-	Group	11.					• • •	• • •						93
-	Group	12		• • •	• • •				• • •	• • •	• • •	• • •	• • •	98
-	Group	13.				• • •							• • •	104
-	Group	14			• • •	• • •	• • •		• • •	• • •		• • •		109
-	Group	15		• • •		• • •		• • •	• • •	• • •				114
-	Group	16		• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •			120
-	Group	17		• • •	• • •	• • •		• • •		• • •				125
-	Group	18		• • •						• • •	• • •	• • •	• • •	130
-	Group	19	• • •	• • •	• • •	• • •			• • •	• • •	• • •		• • •	135
_	Group	20	• • •						• • •	• • •	• • •		• • •	140
-	Group	21			• • •	• • •		• • •		• • •	• • •		• • •	145
_	Group	22												150

- Group 23	155
- Group 24	160
- Group 25	165
PART III	
A. EXTRACTION OF THE BROAD SPECTRUM ANTIBIOTIC PRODUCED	
BY ACTINOMYCES CYANOCOLOR	171
1. Solvent - Solvent Extraction	171
2. Adsorption	174
3. Precipitation	176
- Scheme of purification of the antibiotic	179
- Characterization of the antibiotic substance	
produced by Actinomyces cyanocolor	182
- Physico chemical characterization of the anti-	
biotic produced by Actinomyces cyanocolor	182
1. Solubility of the antibiotic in different	
solvents	182
2. Biochromatographic spectrum of antibiotic	
produced by Actinomyces cyanocolor	183
3. Partial structure elucidation of the anti-	
biotic produced by Actinomyces cyanocolor	185
- The antimicrobial potentialities of the antibio-	
tic substance produced by Actinomyces cyanocolor	190
- Identification of the antibiotic produced by	
Actinomyces cyanocolor	193
B. THE EFFECT OF SOME NUTRIENTS ON THE PRODUCTION OF	
TUE ANTIDIONIA DRODUATE DV LANGUAGO COMPANIO	

1. Suitability of different sources of carbon on	
the antibiotic biosynthesis produced by	
Actinomyces cyanocolor	195
2. Effect of different concentrations of glucose on	
the production of antibiotic by Actinomyces	
cyanocolor	198
3. Effect of different nitrogen sources on the anti-	
biotic biosynthesis by Actinomyces cyanocolor	200
4. Effect of different concentration of ammonium	
sulfate on the production of antibiotic by	
Actinomyces cyanocolor	202
5. Effect of different phosphate salts on antibiotic	
biosynthesis by Actinomyces cyanocolor	204
6. Effect of different concentrations of potassium	
dihydrogen phosphate on the production of anti-	
biotic by Actinomyces cyanocolor	206
7. Effect of different pH values on antibiotic bio-	
synthesis by Actinomyces cyanocolor	208
- Effect of phospholipids supplementation on the	
amount of antibiotic produced by Actinomyces cya-	
nocolor	210
PART IV	
DISCUSSION	212
SUMMARY	212
REFERENCES	225
ARABIC SUMMARY	-

DEDICATION
To All My Family

APPROVAL SHEET

<u>Name</u> :	Hala Mohamed Rifaat Abd El Hamid Al	od El Hady.
<u>Title</u> :	Studies on the Biological and Bioch	nemical Activitie
	of Certain Streptomyces species 3	Isolated From Egyp
	tian Soil.	
<u>Thesis</u>	Approved By:	
Prof. D	Or. Mohamed Ramadan Abu-Shady	
	Professor of Microbiology	
Prof. D	Or. Amira Ahmed El-Gammal	
	Professor of Microbiology	
Dr. Faw	skia M. El-Beih	
Ass	sistant Professor of Microbiology.	

(Committe in Charge)

<u>Date</u>: / /1992

PART 33]33

INTRODUCTION