AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING COMPUTERS AND SYSTEMS ENGINEERING DEPARTMENT

DEVELOPMENT AND EVALUATION OF KNOWLEDGE ACQUISITION AND REPRESENTATION SCHEMES FOR DESIGN AUTOMATION

A thesis submitted in partial fulfillment of the requirements for the degree of

Ph.D.

IN

ELECTRICAL ENGINEERING

[Computers And Systems Engineering]

by

21.38195

SAYED MOHAMED SAYED AL-ARABY

(B.Sc.1976 & M.Sc.1983)

Supervised by

Prof.Dr.M.A.R. GHONAIMY

Faculty of Engineering, Ain Shams University

Prof.Dr. FAIZA A. MOHAMED Prof.Dr. AMR M.A. OMER

Atomic Energy Authority

CAIRO-1993

EXAMINERS CONDUTTEE

Name Title & Affiliation

- Prof. Dr. Abd Al-Monem Usef Belal.
 Cairo University
 Faculty of Engineering
- Signature AY.B.L.

Prof. Dr. Osman Abd El-Latif Badr.
 Ain Shams University
 Faculty of Engineering

for Beh

M. A. R. Shonaing

Prof. Dr. Mohamed Adib Reyad Ghonaimy.
 Ain Shams University
 Faculty of Engineering

Date : 30/3 / 1993

STATEMENT

This dissertation is submitted to Ain Shams University for degree of Ph. D. in Computer Engineering. The work included in this thesis was carried out by the author in Department of Computer and System Engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or qualification at any other university or institution.

Date: 30/3/1993

Signature: Sayed Al-Analy

Name : Sayed Mohamed Sayed Al-Araby

ACKNOWLEDGEMENT

At various stages of this thesis, a number of people have given me invaluable comments on the management and organization of it. A tremendous team effort has given this thesis its quality. In this regard, I own a deeply grateful to Prof. Dr. M.A.R. Ghonaimy for the point suggestion and for his continuous guidance during the realization of this work.

My thanks and deeply grateful to Prof. Dr. Faiza A. Mohamed for her guidance and encouragement. Also, my thanks and deeply grateful to Prof. Dr. Amr N.A. Omer for his guidance, support and encouragement.

My thanks also to all people who assisted me in doing this thesis especially, Prof. Dr. Osman A. Bader from the staff member of the Computers and Systems Engineering Department, and Prof. Dr. Laila F. Fikry the head of Engineering Department of Muclear Search Center.

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

COMPUTERS AND SYSTEMS ENGINEERING DEPARTMENT

Summary of the Ph. D. thesis submitted by :

Eng. Sayed Mohamed Sayed Al-Araby.

Title of thesis :

Development and evaluation of knowledge acquisition and representation schemes for design automation.

Supervisors :

Prof. Dr. M. A. R. Chonaimy

Prof. Dr. Faiza A. Mohamed

Prof. Dr. Amr M. A. Omer

Registration date: 15 / 2 / 1988.

Examination date: 30/3/1993.

SUBMIARY :

Today, there is a growing interest in development and evaluation of knowledge acquisition and representation achieves which are the two important elements of knowledge based systems (K B Ss). The thesis studies a number of different schemes for knowledge representation and knowledge

acquisition techniques with application to design automation.

An overview of design automation systems is presented. ULYSSES system which performs the VLSI design synthesis task of chip and chip layout of CMOS in an automatic fashion uses the rule-based approach for knowledge representation. PI is an algorithmic system for laying out VLSI chips.

This thesis proposes and implements a modular knowledge based system which is very convenient for the layout implementation of either integrated circuits (I Cs) or printed circuit boards (P C Bs) automatically. The modularity of the system facilitates maintenance.

The system overcomes all the layout problems which are usually NP-complete problems: placement, routing and compaction of area. Force-directed placement algorithm is used to select the suitable positions of components with respect to connections among them.

In routing, the thesis presents a new definition for routing channels with convenient rules to facilitate, not only, the routing process but also, the compaction process. Also, each connection net is sorted to either internal net, power ground net or signal net. The nets are executed as internal nets, power-ground nets and signal nets, respectively. But in compaction process, two-dimensional compaction algorithm is used to optimize the area of implemented circuits.

This system is mainly a frame-based which is combined with semantic network and rule-based approaches. Therefore, the system utilizes the advantages of those approaches and their knowledge acquisition techniques. A comparative study is performed between the proposed system and the PI system. This comparative study explains the advantages of the proposed system which overcome PI disadvantages.

The proposed system is tested by several circuits of different densities to verify its capabilities. The results of these circuits are presented with their critical discussion. Also, the description of the proposed system programs are discussed in details. Finally, the proposed future work is presented.

ABSTRACT

This thesis proposes and implements a modular knowledge based system for automated design of either integrated circuits or printed circuit boards. This system proposes solution for placement, routing and compaction of area. This system overcomes PI disadvantages and is tested by several circuits of different densities to verify its capabilities.

CONTENTS

Chapter 1 : INTRODUCTION	1
1.1 The Knowledge-Based Systems	2
1.2 An Overview Of The Proposed System	2
1.3 Outline Of The Thesis	4
Chapter 2 : OVERVIEW OF KNOWLEDGE-BASED SYSTEMS	5
2.1 Knowledge Representation	5
2.1.1 Predicate Logic	6
2.1.1.1 The Proposition And Predicate Calculi	6
2.1.1.2 Theorem Proving, Logic Programming And	
Knowledge Representation	8
2.1.2 Slot And Filler	9
2.1.2.1 Semantic Nets	9
2.1.2.2 Frame-Based Systems	11
2.1.2.2.1 Frame Languages And Examples Of Genera	1
Purpose Frame-Based Systems	13
2.1.2.2.2 Advantages/Disadvantages Of Frame	
Systems	13
2.1.2.3 Scripts	14
2.1.3 Production Rule-Based System	15
2.1.3.1 Approaches To Problem Solving	16
2.2 Knowledge Acquisition	17
2.2.1 Methods For Knowledge Elicitation	18
2.2.2 Dealing With Uncertainty	19
2.2.2.1 Probability Theory	19

2.2.2.2 Certainty Theory	20
2.3 Knowledge Based Systems	21
Chapter 3 : OVERVIEW OF DESIGN AUTOMATION SYSTEMS	23
3.1 ULYSSES System	23
3.1.1 The blackboard Model	23
3.1.2 Data Structures For ULYSSES	26
3.2 PI System	28
3.2.1 Layout Model	28
3.2.2 Input/Output Specifications	29
3.2.3 Modes of Operation	30
3.2.4 Layout Representation	30
Chapter 4 : THE PROPOSED KNOWLEDGE BASED SYSTEM	34
4.1 The Concept Of The Proposed Knowledge Based System	34
4.2 The Specific Application	35
4.2.1 Problem Of Placement	35
4.2.2 Simulated Annealing	37
4.2.3 Force-Directed Placement	38
4.2.4 Placement By Partitioning	43
4.2.5 Numerical Optimization Techniques	44
4.2.6 Placement By The Genetic Algorithm	45
4.2.7 Comments	46
4.3 The Selected Application	47
4.3.1 Description	47
4.3.2 Placement	48
4.3.2.1 Estimation Of Area And Initial Locations	49
4.3.2.2 Applying Placement Algorithm	50

50

4.3.3 Router	50
4.3.3.1 Pre-Router	50
4.3.3.1.1 Definition Of Channels	51
4.3.3.1.2 The Connection Nets	51
4.3.3.2 Execution Of Router	52
4.3.4 Area Compaction	53
4.4 Graphic Representation	57
4.5 Significance Of The Proposed System	58
Chapter 5 : IMPLEMENTATION DETAILS OF THE PROPOSED	
SYSTEM	69
5.1 Goal Of The Implementation	69
5.2 Description	70
5.3 Placement	72
5.3.1 Estimated Area And Initial Placement	72
5.3.2 Force-Directed Algorithm	74
5.4 Routing	76
5.4.1 Pre-Routing	77
5.4.2 Execution Of Routing	78
5.5 Area Optimization	82
5.6 The Coder	83
Chapter 6 : RESULTS AND DISCUSSION	89
6.1 The Implementation Environments	89
6.2 The Layout Generation Task	90
6.2.1 Description	90
6.2.2 Placement	91
6.2.2.1 Interpretation	91

91

6.2.2.2 Symbolic Nets to Integer Nets	92
6.2.2.3 Connection Natrix	92
6.2.2.4 Sorting	92
6.2.2.5 Applying Force-Directed Placement	
Algorithm	93
6.2.3 Routing	93
6.2.3.1 Channel Defination	93
6.2.3.2 Sorting Nets	94
6.2.3.3 Arranging Power-Ground And Signal Nets	94
6.2.3.4 Internal Routes	94
6.2.3.5 Power-Ground And Signal Routes	95
6.2.4 Area Compaction	96
6.2.5 Coder	96
6.3 Discussion	97
Chapter 7 : CONCLUSION AND FUTURE WORK	116
7.1 Comparison And Evaluation Of Knowledge	
Representation Schemes	116
7.2 Knowledge Based Systems	117
7.3 Future Work	120
REFERENCES	122
Appendix 1 : The Listing Of ACQUIRE.PRO Program	126
Appendix 2 : The Listing Of INTERPRE.PRO Program	138
Appendix 3 : The Listing Of Placement Programs	156
Appendix 4 : The Listing Of Pre-Routing Programs	169
Appendix 5 : The listing Of Execution Of Routing	
Programe	187

Appendix 6 : The listing Of Area Compaction Programs	224
Appendix 7 : The Listing Of Coder Program	243
Appendix 8 : The Characteristics Of Components	247
Appendix 9 : The Description Of Divider Circuit	249
Appendix 10 : The Description Of Timer Circuit	251
Appendix 11 : The Description Of Input-Controller-Timer	
Circuit	253
Appendix 12: The Listing Of Initial Positions Of Timer	
And Divider Circuits	257
Appendix 13: The Connection Nets Of Timer And Divider	
Circuits In Integer Form	250
Appendix 14 : The Connection Matrices Of Timer And	
Divider Circuits With Their Sorting Arrays	262
Appendix 15 : The Resultant Positions Of Timer And	
Divider Circuits	264
Appendix 16 : The Defined Channels Of Divider Circuit	
And Its Sorted Nets	266
Appendix 17 : Arranged Nets Of Divider Circuit	269
Appendix 18 : The Internal Routes Of Divider circuit	270
LISTING OF FIGURES :	
Fig. (3.1) The Full ULYSSES design environment	33
Fig. (4.1) The Proposed Frame-Based System For	
Computer-Aided Design	59
Fig. (4.2) Some Wiring Schemes	59
Fig. (4.3) Semiperimeter Scheme	60
Fig. (4.4) Force-Directed Algorithm	60

•

Fig. (4.5) Random Initial Placement	61
Fig. (4.6) Final Placement After Two Iteration	61
Fig. (4.7) The Abstract Form Of Semantic Network	61
Fig. (4.8) The Partitions Of Estimated Area	62
Fig. (4.9) The Different Divisions Of Square Area	62
Fig. (4.10) The Flow Chart Of Executing Router	63
Fig. (4.11) One Column Of Estimated Area	64
Fig. (4.12) One Row Of The Estimated Area	64
Fig. (4.13) The Compacted Row Of Example (2)	65
Fog. (5.1) The Complete Structure Of The	
Implementation Of Proposed System	84
Fig. (5.2) The Introductory Screen Of Description	
Module	85
Fig. (5.3) The Introductory Screen Of Modification	85
Fig. (5.4) The Results Of Testing Direct Routing	86
Fig. (5.5) The Results Of Testing Routing Towards	
Vertical Routes	87
Fig. (5.6) The Results Of Testing Routing Towards	
Horizontal Routes	88
Fig. (6.1a) The Schematic Diagram Of Divider Circuit	100
Fig. (6.1b) The Schematic Diagram Of Timer Circuit	101
Fig. (6.2) The Schematic Diagram Of Input Controller	
Timer Circuit	102
Fig. (6.3) The Semantic Network Of PCB Description	105
Fig. (6.4a) The Initial Placement Of Timer Circuit	106
Fig. (6.4b) The Initial Placement Of Divider Circuit	107