1 - 1 2 / 6

STUDY OF VERTICAL TRANSMISSION OF HEPATITIS B VIRUS INFECTION AND PREVALENCE OF HEPATITIS B SURFACE Ag AND ANTIBODY IN EGYPTIAN INFANTS AND CHILDREN.

Thesis
Submitted in partial flufilment
for the degree of M.D.

Ιn

Preventive Medicine & Public Health

Ву

Layla Shehata Abdel Hamid M.Sc. in Public Health

Supervised By

Prof. Dr. Aly Massoud
Professor of Community,
Environmental and
Occupational medicine &
Vice-Dean for post-graduate
Faculty of Medicine
Ain Shams University

Prof. Dr. Mohamed, K. Elsobky Professor and head of Community, Environmental and Occupational medicine Department.

Faculty of Medicin Manofia University Prof. Dr. Yassin A.Ghaffar Professor of Medicine Faculty of Medicine Ain Shams University.

Dr. Ahmed Abbass Assistant Professor of Biochemistry Faculty of Medicine Al-Azhar University

Faculty of Medicine Ain Shams University 1986 Biochemistry, Al - AZhar University, for his supervision and valuable advices throughout the practical work of this study.

I must present many thanks to Prof. Dr. Moomena Kamel, Prof. of Clinical Pathology, Cairo University for her fathful advices and effort during the practical work.

I also wish to thank Eng. Waheed Sheemy the manager director for Tomorrow World Engineering Office "TWE" for his effort in preparing graghs computer programmes.

CONTENTS

		Page
Ι	INTRODUCTION.	1
II	REVIEW OF LITERATURES.	
	1. Historical review.	3
	2. Virology.	5
	a. Morphology & Properties of hepatitis viruses.	5
	b. Hepatitis B antigens.	10
	c. Immune response to HBV	14
	3. Clinical manifestations of viral hepatitis.	21
	4. Epidemiology of viral hepatitis.	28
	a. Hepatitis A.	28
	b. Hepatitis B.	38
	b1. Vertical transmission of HBV.	58
	b2. Carrier state.	78
	c. Hepatitis non-A, non-B.	94
	5. Prevention of viral hepatitis.	98
III	AIM OF THE WORK.	33
IV	MATERIAL AND METHODS.	134
V	RESUITS	166
VI.	DISCUSSION.	196
VII	RECOMMENDATIONS.	230
VIII	SUMMARY.	233
IX	REFERENCES.	237
v	ADADIC CHMMADY	

INTRODUCTION

INTRODUCTION

Viral hepatitis is a major and serious public health problem in most parts of the world. It is a systemic infection predominatly affecting the liver and caused by a variety of viruses of widely different taxon. Hepatitis virus type A, B, C (non-A, non-B) and D (delta) are the most important causes of acute hepatitis.

Hepatitis B accounts for 18-70 % of all reported cases of viral hepatitis. The spectrum of infection ranges from inapparent anicteric (but symptomatic), icteric , to fulminant. Many cases of hepatitis B anicteric . Some of them remain chronically antigenemic , thus , constituting a carrier state According to WHO , 1978 , there are about 200 million carriers of this virus mainly in areas of the world. The majority are "healthy", some suffer various forms of chronic hepatitis, some will develop cirrhosis and primary liver cancer significance of this condition, especially as regards infectivity of the carriers, still remains be clarified ,

Veritcal transmission, i.e infection passing from a mother to foetus or neonate , is numerically important method of infection counteries with high carrier rates . The infection transmiting either transplacental or at the time of birth where there is a chance of maternal - foetal blood mixing, or during close contact afterwards sherlock, 1981). Antigenemia develops in within three months of birth and tends persist (Beasley et al . , 1977) . These infants will subjected to chronic hepatitis B virus be infection, and about 25 % of them may ultimately die of liver failure caused by chronic active hepatitis, cirrhosis , and possibly primary hepatocellular carcinoma (Krugman , 1985) .

Consequently, it is highly informative to study the prevalence of hepatitis B surface antigen (HBsAg) antibody (anti-HBs) among those high and risk groups οf infants and children as well as the of infectivity among women in extent last trimester of pregnancy in Egypt.

REVIEW OF LITERATURES

REVIEW OF LITRATURES

[1] HISTORICAL REVIEW

The first reference to epidemic jaundice has been ascribed to Hippocrates . Epidemic outbreaks were noted as early as the eighth jaundice in Europe, and by the nineteenth century the disease became known as infectious hepatitis . With the advent of gamma globulin prophylaxis and the introduction of vaccination programs against diseases (as yellow fever) another infectious οf acute hepatitis , the viral homologous serum hepatitis observed . A major was advance in our understanding of hepatitis occured in the mid - 1940 s and early 1950 s when the clinical and epidemiological characteristics οf distinct forms of two hepatitis (Type A and Type B) in man were described extensive detail . The acquisition of Type A hepatitis characterized by a short incubation period , predominantly orofecal route of transmission , epidemic outbreaks. Type B hepatitis frequent observed have a long I . P , a parenteral route of to transmission, and an endemic nature of occurance.

but antigenically unrelated to either types (Alter, et al., 1975 a) and it has been designated non-A, non-B hepatitis. At the present time, the non-A, non-B viral agents have not been identified.

More recently, Hepatitis D virus is a newly described, unique viral agent that may cause acute or chronic hepatitis (Krugman, 1985).

[2] VIROLOGY

- (A) Morphology and properties of hepatitis viruses: i Hepatitis A virus (HAV):
 - The hepatitis A virus (HAV) is a small 27 nanometer (n m) cubically symmetrical RNA virus, Fig(1), that belongs to the picorna virus class of enteroviruses (koff, 1980).

Fig (1): Diagram of the hepatitis A virus shown as a hexa gonal body containing single stranded R N A .

Ref : Sherlock , 1981 . pp 250

Persons infected with HBVand who are serologically HBsAg positive are circulating all morphological forms associated with HBV of which 22 n m spheres constitute the bulk of antigenic mass and Dane particles only a small, but varrying proportion of this mass .

Only Dane particles is considered infectious. The other circulating morphologic forms (spheres and tubules) are not infective, although they possess antigenecity (Maynard, 1980). This is because these spheres and tubules are devoid of any HBc Ag, DNA polymerase, or DNA.

Resistence of the HBV (Biophysical properties):

Both HB V and HBs Ag are stable at - 20 c integrity is preserved after plasma 60°c for fractionation . Heating at 10 hours boiling for one minute, inactivates HBV but not affect the antigenicity of HBs Ag . Soduim hypochlorite 0.1 % - 0.5 % destroys antigenicity (and the HB V) within 3 minutes in protein - deficient solutions (Hollinger & Stevens, 1982).

The surface component of hepatitis D virus is hepatitis B surface antigen (HBs Ag) and its component 35 - 37 n m in diameter containing is the R N A genome and delta antigen (Fig 3) . Recognition οf this infection in the presence of HBs Aq important because the prognostic implications are more sever (progressive liver disease) and the therapeutic approach different from normal HBV infection.

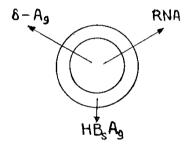


Fig 3: Morphology of delta virus (Rizzetto, 1985. pp3).

(B) Hepatitis B Antigens:

The following four antigens are known to be associated with H B V infection:-

i - Hepatitis B surface antigen (HBs Ag) :

In most individuals infected with HBV, HBs Ag was replicated in their liver and released to plasma and bile (Overby, 1983). When serum is positive, most other body fluids can be demonstrated to have HBs Ag, which may represent leakage from blood due to haemorrhage, exudation or transduction. However,

From the epidemiological point of view, only the ayw and adw-grouped specificities as well as ayr and adr are of interest (Maynard, 1980). Although these sets appear to represent mutually exclusive subdeterminants, additional subtypes (x, n, t, q) forthcoming as newly described determinants are confirmed (Holland, 1975).

These subtypes are of great use in providing additional epidemiologic markers i n evaluating the transmission οf HBVinfection from one person to another since secondary cases have the same subtype the index case. But correlation between subtypes and severity of hepatitis B infection or outcome has been established (Gerety, et al , 1975).

Current work on HBs Ag subtypes is limited by the ability to find or produce antibodies to other than the group reactive determinant "a". The other determinants appear to be less immunogenic than "a".

ii - Hepatitis B core antigen (HBcAg):

This antigen has been localized predominantly to the nucleus and infrequently to the cytoplasm of infected hepatocytes (Yamada & Nakane, 1977). This antigen is specific to the liver and is not found in serum or other tissues (Murphy, et al., 1976).

iV Delta antigen (δ antigen):

Delta antigen (6. Ag), originally described by Rizzetto, et al., 1977 in liver cell nuclei in Italian carriers of HBs Ag, was confirmed by Canese, et al., 1979 and Ogra & Beutner, 1981. Diagnosis is based on the finding of the delta antigenantibody system. Antibody to delta antigen (IgM class) has been detected in sera of patients with persistent HBV infection, and may be correlated with progression to chronic hepatitis (Rizzetto, et al., 1979).

Delta antigen is immunologically distinct from the HBs Ag, HBe Ag and HBc Ag. Experimental transmission of delta antigen to chimpanzees has been reported (Rizzetto, et al., 1980). Rizzetto, 1985 reported that delta antigen, is the immunologic expression of a unique hepatitis B virus.

C - Immune response to HBV

The host reaction to HBV may depend on : immune response of the host, size of inoculum, the portal of entery, and the number of exposures (Thomas & Jewel, 1979). It seems that the immune response of the host to the virus rather than the virus itself

(which is not directly cytopathic) may be the predominant factor in determining the pathogenesis of liver injury in HBV infection. This immune response to HBV is exceedingly complex and very variable and from this stems some of the variability in the resulting clinical manifestations of infection.

i - Humeral immune responses

The sequence of appearance of HBV related antibodies is: anti-HBc appears first, follows by anti-HBe and finally by anti-HBs Fig (5).

a- Antibody to hepatitis B core antigen (anti-HBc):

Anti - HBc is the first measurable reading of humeral response in HBV infection and generally follows the detection of HBs Ag by 2 to 10 weeks (Irwin, et al., 1977). Anti - HBc is immunoglobulin belongs predominantly to I g M and I g G subclass (Brzoske, et al., 1975). The initial anti - HBc response consists mostly of Ig M antibody which then falls to undetectable levels, while only anti - HBc Ig G persists. (Hoofnagle, 1981). However some chronic HBs Ag carriers may mentain moderate to low titers of anti - HBc Ig M (Kryger, et al., 1981).