BIOCHEMICAL AND IMMUNOLOGICAL STUDIES FOR MODULATION OF SCHISTOSOMAL GRANULOMA USING S. MANSONI SOLUBLE EGG ANTIGEN FRACTION (S).

Thesis Submitted By

Faten Moustafa Nagy (B.Sc., M. Sc. in Biochemistry)

574.292 F.M For the Degree of DOCTOR OF PHILOSOPHY in Biochemistry

Supervised By

51636

Prof. Dr.

Nadia M. Abdallah

Professor & Head of Biochemistry Dept.

Faculty of Science Ain Shams University Prof. Dr.

Hanaa I. Hassanein

Professor of Imunochemistry Theodor Bilharz Research Institute

Prof. Dr. Neimat Moustafa El-Ghorab

Medical Research Specialist Department of Basic Science NAMRU 3 مل الزاب

Biochemistry Department Faculty of Science Ain Shams University

(1995)

To my dearest Mother,

To whom I owe all love and support,

& To the memory of my dear father.

ACKNOWLEDGMENT

"First and foremost, thanks are due to God, the beneficent and merciful"

I am greatly honoured to express my gratitude to Prof. Dr. Nadia Mohamed Abdallah, Professor and Head of Biochemistry, Department, Faculty of Science, Ain Shams University, for her valuable scientific suppervision, unfailing support, prolific help, and for whom no words of praise are sufficient.

I would like to express my thanks and gratitude to **Prof. Dr. Zeinab Ahmed** Shaker, Professor and Head of Immunology Laboratory, Theodor Bilharz Research Institute, for her encouraging attitude, generous help and cooperation.

I bestow my Prof. Dr. Hanaa Ismail Hassanein, Professor of Clinical Chemistry, Theodor Bilharz Research Institute, who suggested the subject and set up the plan. Without her indispensible scientific supervision, sincere guidance and abounding patience, this work would have never been accomplished.

I would like to express my sincere gratitude to Dr. Neimat Moustafa El-Ghorab, Medical Research Specialist, Department of Basic Science, NAMRU3, for her effective supervision, valuable directions, unfailing support and especially for her kind delicate smile.

I am very grateful to **Prof. Dr. Sanna Botros**, Professor of Pharmacology, Theodor Bilharz Research Institute, for her helping in performing in vivo model, valuable suggestions and continuous encouragement.

I would like to convey my sincere thanks to Dr. Azza El-Bassiouny, Assistant Professor of Immunology, Theodor Bilharz Research Institute, for her close sincere supervision, invaluable advice and meticulous revision of every details in this thesis. Because of her generous effort, tremendous concern and care, this thesis was brought to light.

I would sincerely like to thank Dr. Mette Strand and all members of Pharmacology and Experimental Therapeutic Department, School of Medicine, Johns Hopkins University, U.S.A., for their generous hospitality during my training in their lab.

A special tribute is paid to Mrs. Hoda Abou Taleb for her generous effort during the statistical analysis of the study and helping me in using the computer.

Last, but not least, a word of thanks to all staff members of Immunology Department, to whom I feel much indebted for their sincere and continuous encouragement.

Financial Support: Schistosomiasis Research Project SRP, MOH/USAID (Project 1/05).

ABSTRACT

Schistosoma mansoni soluble egg antigen (SEA) was fractionated using lectin affinity chromatography and preparative isoelectric focusing. The SEA fractions and pI subfractions were assessed for their ability to elicit blastogenic response from spleen cells of S. mansoni chronically infected mice and their ability to inhibit the in vivo pulmonary granuloma formation in naive mice. It was found that supernatants from chronically infected mice stimulated with the acidic SEA glycoprotein FIV (pI 4.5-5.5) induced maximum inhibition of the in vitro granuloma formation. Furthermore, the intravenous administration of low doses of this fraction can induce a state of hyporesponsiveness in murine schistosomiasis.

CONTENTS

				Page
INT	RODU	JCTIO	ON	• • • • • :
AIM	OF	THE V	WORK	5
REV	VIEW	OF L	ITERATURE	6
I. S	Schisto	somia	asis	6
	Hos	t - Par	asite Interactions	7
	A.	Grai	nuloma Formation	10
		1.	Mechanisms of granuloma formation	10
		2.	Models of induction of granuloma formation	n14
			a. The in vitro granuloma model	14
			b. The in vivo pulmonary granuloma mode	115
	B.	Mod	Iulation of Granulomatous hypersensitivity	16
		Mec	chanism of immunomodulation of granulomatous	
		hype	ersensitivity	17
		1.	The cellular immune response	17
		2.	The humoral immune response	20
II. B	iocher	nistry	of Schistosomal antigens	23
	A. (Glycoc	conjugates	23
		1.	Biochemical structure of glycoconjugates	23
		2.	Biofunction of glycoconjugates	25
		3.	Identification and characterization of	
			parasite glycoproteins	27

						Page
		a.	Biochemical	techniques	• • • • • • • • • • • • • • • • • • • •	27
		b.	Lectin - base	d techniques	• • • • • • • • • • • • • • • •	27
		c.	Antibody - ba	sed techniqu	es	29
		đ.	Partial dest	ruction and	inhibition	29
	B.	Schistosom	e mansoni egg	antigens	• • • • • • • • • • • • • •	30
	C.	Characteriz	ation of egg gl	ycoproteins	• • • • • • • • • • • • • • • • • • • •	35
Ш.	Toler	ance	• • • • • • • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	39
	A.	Definition	and Mechanism	n of Toleranc	e	39
	B.	Induction of	of Tolerance	• • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	41
	C.	Trials for	Induction of S	Schistosomal		
		Antigen - S	pecific Hypores	ponsiveness	•••••••	44
MAT	ERIAI	LS AND M	ETHODS	• • • • • • • • • • • • • • • • • • • •	••••••	47
RES	ULTS.	•••••		••••••	••••••	79
DISC	CUSSIC	ON	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	116
SUM	MARY	AND CO	NCLUSION	• • • • • • • • • • • • • • • • • • • •	•••••	132
REF	EREN	CES		••••••	•••••	136
ARA	BIC SI	UMMARY				

LIST OF ABBREVIATIONS

ABBREVIATION	DEFINITION
A-IEF	analytical isoelectric focusing
APCs	antigen presenting cells
% C	cross-linking monomer concentration
CD4	T helper cells
CD8	T cytotoxic/suppressor cells
Con A	Concanavalin A
Con A+	Con A bound fraction
Con A	Con A unbound fraction
CNBr	cyanogen bromide
c/p	carbohydrate/protein ratio
cpm	counts per minute
DEAE	diethyl aminoethyl cellulose
DTH	delayed-type hypersensitivity
EDTA	ethylenediamine tetra-acetic acid
Fuc	L-fucose
g	gravity force
Gal	D -galactose
Gal NAc	N-acetyl-D-galactosamine
GD	granuloma diameter
GI	granuloma index
Glc A	D-glucuronic acid
Glc NAc	N-acetyl-D-glucosamine
Ido A	L-iduronic acid
IEF	isoelectric focusing
IFN-δ	interferon gamma
IL-2	interleukin-2
IL-4	interleukin-4
IL-5	interleukin-5
IL-10	interleukin-10
kDa	kilodalton
mA	milliampere

ABBREVIATION

X

mean

DEFINITION

MEG major egg glycoprotein major histocompatibility complex MHC MSA major serological antigen MW Co: molecular coefficient N-acetylneuraminic acid, sialic acid Neu 5Ac p probability value PAS periodic acid-Schiff PBS phosphate buffered saline Ηq hydrogen ion concentration pΙ isoelectric point P-IEF preparative isoelectric focusing **PNA** peanut agglutinin PNA+ peanut bound fraction PNApeanut unbound fraction Rf rate of flow Rosewell Park Memorial Institute medium 1640 **RPMI 1640** SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis SEA soluble egg antigen SEM standard error of the mean SI stimulation index &T total monomer concentration TCR T cell receptor TGF-B transforming growth factor beta Th T helper cells Ts T suppressor cells TseF T suppressor effector factor(s) μCi microcurie v volt v/v volume per volume W watt w/v weight per volume

LIST OF FIGURES

	Page
REVIEW	
Fig. 1	The induction of the immune response to egg antigens12
Fig. 2	The down-modulation of the immune response to egg antigen21
Material &	& Methods
Fig. 3A	Schematic representation of the experimental design used for preparation, purification and fractionation of S. mansoni soluble egg antigen and assessment of immunogenic potential of SEA fractions
Fig. 3B	Schematic representation of the experimental design used for fractionation of SEA glycoproteins and assessment of immunomodulatory potential of acidic SEA glycoprotein subfractions49
Fig. 4	Molecular weight standard curve64
Fig. 5	Kinetics of SEA fractions - induced lymphoproliferative response69
RESULTS	
Fig. 1	The carbohydrate/protein ratio and percent carbohydrate recovery in S. mansoni soluble egg antigen (SEA) fractions

Fig. 2	Coomassie blue staining of gradient (5-22%) SDS-PAGE separated SEA fractions and molecular weight standard (left lane)82
Fig. 3	Densitometric scanning of Coomassie blue stained gels of SDS - PAGE separated SEA fractions83
Fig. 4	Periodic Acid-Schiff staining of gels of gradient (5-22%) SDS-PAGE separated soluble egg antigen (SEA) fractions85
Fig. 5	Periodic Acid-Schiff staining of gels of analytical isoelectric focusing separated soluble egg antigen (SEA) and SEA fractions86
Fig. 6	The lymphoproliferative response of splenic T cells from S. mansoni acutely and chronically infected mice to various SEA fractions and Con A mitogen88
Fig. 7	Morphologic illustration of cellular reactions of splenic T cells to polyacrylamide beads coated with SEA in vitro91
Fig. 8	Inhibition of the <i>in vitro</i> granuloma formation by supernatants from acute and chronic infection spleen cells prestimulated for 24 h (A) or 72 h (B) with various soluble egg antigen (SEA) fractions92

Fig. 9	The pI range and protein content of Con A*-pI subfractions obtained by preparative isoelectric focusing95
Fig. 10	Coomassie blue staining of gradient (5-22%) SDS - PAGE separated Con A* - pI subfractions96
Fig. 11	Densitometric scanning of Coomassie blue stained gels of SDS-PAGE of ConA*-pI subfractions98
Fig. 12	The lymphoproliferative response of splenic T cells from S. mansoni chronically infected mice to Con A+-pI subfractions
Fig. 13	The granuloma indices and percent inhibition of the <i>in vitro</i> granuloma formation by supernatants from splenocytes of chronically infected mice stimulated for 72 h with Con A*-pI subfractions101
Fig. 14	The pI range and protein content of FIV- pI subfractions obtained by preparative isoelectric focusing
Fig. 15	The lymphoproliferative response of splenic T cells from S. mansoni chronically infected mice to acidic FIV-pI subfractions
Fig. 16	The granuloma indices and percent inhibition of the <i>in vitro</i> granuloma formation by supernatants from chronic

splenic T cells to crude SEA and Con A-mitogen in mice receiving SEA, Con A⁺,

FII and FIV......114

LIST OF TABLES

	Page
REVIEW	
Table I	The major types of N-linked carbohydrate chains and O-linked glycans24
Table II	Various lectins used for the analysis of carbohydrate in schistosomal antigens28
RESULTS	
Table 1	The granuloma indices of the in vitro granulomas modulated by supernatants from acute and chronic infection spleen cells perstimulated for 24 or 72 hrs with various SEA fractions90