

Ain Shams University
Faculty of Engineering
Electrical Power and Machines Dept.

Study of Operation and Islanding in Smart Grid

Master Thesis By Eng. Mostafa Atef Mohamed Rashad Abdel Razek

Submitted in Partial fulfillment of the Requirements for the Master Degree

Supervised by

Prof.Dr.Mohamed Abdel Latif Bader

Professor-Electrical Power and Machines Dept.

Dr.Rania Abdel Wahed Abdel Haliem Swief

Associated Professor- Electrical Power and Machines Dept.

Cairo 2015

APPROVAL SHEET

Study of Operation and Islanding in Smart Grid

Master Thesis
By
Eng. Mostafa Atef Mohamed Rashad Abdel Razek

Submitted in Partial fulfillment for the Requirements of the Degree of Master of Science in Electrical Engineering (Power and Machines Engineering)

Approved by:

Signature

Prof.Dr. Esam El Dain Mohamed Abo El Dahab

Faculty of Engineering-Cairo University

Prof.Dr.Al Moataz Yousif Abdel Aziz

Faculty of Engineering-Ain Shams University

Prof.Dr.Mohamed Abdel Latif Bader

Faculty of Engineering-Ain Shams University

Date: / / 2015

SUPERVISION SHEET

Study of Operation and Islanding in Smart Grid

Master Thesis
By
Eng. Mostafa Atef Mohamed Rashad Abdel Razek

Submitted in Partial fulfillment for the Requirements of the Degree of Master of Science in Electrical Engineering (Power and Machines Engineering)

Supervised by:

Signature

Prof.Dr.Mohamed Abdel Latif Bader Faculty of Engineering-Ain Shams University

Dr.Rania Abdel Wahed Abdel Haliem Sweif

Faculty of Engineering-Ain Shams University

Date: / / 2015

ACKNOWLEDGMENT

I cannot express enough thanks to my professors for their continued support and encouragement, Prof. Dr. Mohamed Abdel Latif Bader and Dr. Rania Abdel Wahed Abdel Haliem Swief. I offer my sincere appreciation for the learning opportunities that are provided by my professors. This thesis could not have been accomplished without the supporting of my professors.

I would like to thank my supportive wife, Engy. My deepest gratitude is to my wife. Her encouragement when the times got rough is much appreciated. Especially thanks to my precious son, Rwyd, for his sweet smile. My heartfelt thanks should go to my son.

Finally, I thank my parents, Atef and Ehssan, for their caring me. They are supporting me to be as ambitious as I want. Thanks also to my brother Ahmed, my sister Abeer, and all my family.

TABLE OF CONTENTS

CHAPTER ONE: INTRODUCTION

1.1.	General	1
1.2.	Thesis objective	2
1.3.	Thesis outline	2
CHAPTE	R TWO REVIEW OF LITRATURE	
2.1.	Introduction	5
2.2.	Surveying on the studies that related to islanding detection	6
CHAPTER THREE THE PROPOSED ISLANDING		
DETECTION ALGORITHM		
3.1.	Introduction	29
3.2.	Islanding definition, advantages and disadvantages	29
3.3.	The reasons of islanding	30
3.4.	Different cause of islanding	31
3.5.	IEEE standard about islanding	31
3.6.	Techniques for islanding detections	32
3.6.1.	Local Techniques	33

i

Table of conten	Table of contents		
3.6.1.1	Passive Technique	33	
3.6.1.1.1.	Different methods of passive technique	34	
3.6.1.1.2.	The advantages of passive techniques	35	
3.6.1.1.3.	The disadvantages of passive techniques	35	
3.6.1.2.	Active Technique	35	
3.6.1.2.1.	Different methods of active techniques	36	
3.6.1.2.2	The advantages of active techniques	36	
3.3.1.2.3	The disadvantages of Active techniques	36	
3.6.1.3.	Remote technique	37	
3.6.1.3.1.	Methods of remote technique	37	
3.6.1.3.2.	Advantages of remote technique	38	
3.6.1.3.3.	Disadvantage of remote techniques	39	
3.7.	Proposed islanding detection algorithm	40	
3.7.1.	Under/over voltage passive technique	40	
3.7.2.	Under/over frequency passive technique	40	
3.7.3.	Rate of change of voltage passive technique	41	
3.7.4.	Real Power Shift(RPS) active technique	43	

Table of contents		
3.7.4.1	Selection of t_1, t_2, V_{SMin} , V_{SMax} and V_{SMaxU}	43
3.7.5.	Rate Of Change Of Frequency(ROCOF)	45
3.7.5.1	Selection of ROCOF relay threshold	46
3.7.6.	Rate Of Change of Phase Angle Difference(ROCPAD)	47
3.7.7.	The procedure of proposed algorithm	48
3.8.	Different scenarios for testing by the proposed algorithm	48
CHAPTER FOUR RESULTS OF PROPOSED ISLANDING DETECTION ALGORITHM		
4.1.	Introduction	51
4.2.	The first system under study	51
4.3.	Simulation and results	53
4.3.1.	Results of applying under/over voltage technique	53
4.3.2	Results of applying under/over frequency technique	55
4.3.3.	Results of applying rate of change of voltage and real power shift(RPS) technique	57
4.3.4.	Results of applying rate of change of frequency(ROCOF) technique	59

Table of contents		
4.3.5.	Results of applying rate of change of phase angle difference (ROCPAD) technique	61
4.4.	Conclusion of testing the proposed algorithm under first system	63
СНАРТЕ	R FIFTH THE EFFECT OF DIFFERENT	
TYPES (OF LOADS AND THE LOCATION OF	
LOADS (ON THE PROPOSED ALGORITHM	
5.1.	Introduction	64
5.2.	The second system under study	64
5.3.	Simulation and results for the second system	67
5.3.1	The first scenario	69
5.3.1.1.	Under/over voltage passive technique	70
5.3.1.1.1.	Pure Resistive Load	70
5.3.1.1.2.	Pure Inductive Load	73
5.3.1.1.3	Pure Capacitive Load	75
5.3.1.1.4.	Resistive-Inductive Load(R-L)	77
5.3.1.1.5.	Resistive-Capacitive Load(R-C)	78
5.3.1.1.6	Summary of results of the over/under voltage under different types of load at PCC	80

Table of contents		
5.3.1.2.	Under/over frequency passive technique	80
5.3.1.2.1.	Pure Resistive Load	81
5.3.1.2.2.	Pure Inductive Load	82
5.3.1.2.3.	Pure Capacitive Load	83
5.3.1.2.4.	Resistive-Inductive Load(R-L)	83
5.3.1.2.5.	Resistive-Capacitive Load(R-C)	84
5.3.1.2.6.	Summary of results of the over/under frequency under different types of load at PCC	85
5.3.1.3.	Rate of change of voltage and real power shift technique	85
5.3.1.3.1.	Pure Resistive Load	86
5.3.1.3.2.	Pure Inductive Load	89
5.3.1.3.3.	Pure Capacitive Load	92
5.3.1.3.4.	Resistive-Inductive Load(R-L)	95
5.3.1.3.5.	Resistive-Capacitive Load(R-C)	97
5.3.1.3.6	Summary of results of rate of change of voltage and RPS under different types of load at PCC	100
5.3.1.4.	Rate of change of frequency(ROCOF)	100

Table of contents		
5.3.1.4.1.	Pure Resistive Load	101
5.3.1.4.2.	Pure Inductive Load	103
5.3.1.4.3.	Pure Capacitive Load	105
5.3.1.4.4.	Resistive-Inductive Load(R-L)	107
5.3.1.4.5.	Resistive-Capacitive Load(R-C)	109
5.3.1.4.6.	Summary of results of ROCOF under different types of load at PCC	110
5.3.1.5.	Rate of change of phase angle difference(ROCPAD)	111
5.3.1.5.1.	Pure Resistive Load	111
5.3.1.5.2.	Pure Inductive Load	113
5.3.1.5.3.	Pure Capacitive Load	115
5.3.1.5.4.	Resistive-Inductive Load(R-L)	117
5.3.1.5.5.	Resistive-Capacitive Load(R-C)	119
5.3.1.5.6.	Summary of results of ROCPAD under different types of load at PCC	120
5.3.2.	The second scenario for testing second system when load increased at DG1	121

Table of conte	nts	
5.3.2.1.	Rate of change of voltage and RPS technique	121
5.3.2.2.	Rate of change of frequency(ROCOF)	122
5.3.2.3.	Rate of change of phase angle difference(ROCPAD)	125
5.3.2.4.	Summary of the second scenario	127
5.3.3.	The third scenario for testing the second system	127
CHAPTER SIX THE EFFECT OF THE DIFFERENT TYPES OF DG AND THE DIFFERENT TYPES OF FAULTS ON THE PROPOSED ALGORITHM		
6.1.	Introduction	130
6.2.	The third system under study	130
6.3.	Simulation and results for the third system	131
6.3.1.	The first scenario for testing the third system	132
6.3.1.1.	Under/over voltage passive technique	132
6.3.1.2.	Under/over frequency passive technique	136
6.3.1.3.	Rate of change of voltage and real power shift technique	137
6.3.1.4.	Rate of change of frequency(ROCOF)	138

Table of contents		
6.3.1.5.	Rate of change of phase angle difference(ROCPAD)	141
6.3.1.6.	Summary of the first scenario	144
6.3.2.	The second scenario for testing the third system	145
6.3.3.	The third scenario for testing the third scenario	147
6.3.3.1.	Single line to ground fault	148
6.3.3.2.	Double line to ground fault	149
6.3.3.3.	Phase to phase fault	151
6.3.3.4.	Summary of the third scenario	153
CHAPTE RECOMN	R SEVEN CONCLUSION AND MENDATIONS FOR FUTURE WORK	
7.1	Introduction	154
7.2.	Conclusions	154
7.3.	Recommendations for future work	155
LIST OF	REFERENCES	156

Table3.1.

LIST OF TABLES

Detection time of the conventional methods

Table4.1.	Parameters of Gas turbine generator(DG)	52
Table4.2.	Parameters of transformers	52
Table4.3.	Parameters of nominal loading	53
Table4.4.	Parameters of Distribution lines	53
Table4.5.	Values of voltage drop for loading from 0% to 80% and the decision of islanding or non-islanding	54
Table4.6.	Values of frequency for loading from 0% to 80% and the decision of islanding or non-islanding	56
Table4.7.	Values of Rate of change of voltage for loading from 0% to 80% and the decision of islanding or non-islanding	58
Table5.1.	Parameters of gas turbine generator (DG)	66
Table5.2.	Parameters of transformers	66
Table5.3.	Parameters of nominal loading	67
Table5.4.	Parameters of distribution line	67
Table5.5.	The voltage drop in case of R-load transient time include	71
Table5.6.	The voltage drop in case of R-load non-	71
Table5.7.	transient time include The voltage drop in case of L-load transient time include	73
Table5.8.	The voltage drop in case of L-load non-	73

39

ist of tables		
	transient time include	
Table5.9.	The voltage drop in case of C-load transient time include	75
Table5.10.	The voltage drop in case of C-load non-transient time include	75
Table5.11.	The voltage drop in case of transient time $include(R-L)$	77
Table5.12.	The voltage drop in case of non-transient time $include(R-L)$	77
Table5.13.	The voltage drop in case of transient time $include(R-C)$	79
Table5.14.	The voltage drop in case of non-transient time $include(R-C)$	79
Table5.15.	The frequency at PCC in case of R-load increasing	81
Table5.16.	The frequency at PCC in case of L-load increasing	82
Table5.17.	The frequency at PCC in case of C-load increasing	83
Table5.18.	The frequency at PCC in case of R-L load increasing	84
Table5.19.	The frequency at PCC in case of R-C load increasing	84
Table5.20.	Rate of change of voltage at PCC in case of R-load increasing and transient time include	86
Table5.21.	Rate of change of voltage at PCC in case of R-load increasing and non-transient time include	87

Rate of change of voltage at PCC in case of L- 89

Table5.22.

	load increasing and transient time include	
Table5.23.	Rate of change of voltage at PCC in case of L-load increasing and non-transient time include	90
Table5.24.	Rate of change of voltage at PCC in case of C-load increasing and transient time include	92
Table5.25.	Rate of change of voltage at PCC in case of C-load increasing and non-transient time include	93
Table5.26.	Rate of change of voltage at PCC in case of R-L load increasing and transient time include	95
Table5.27.	Rate of change of voltage at PCC in case of R-L load increasing and non-transient time include	96
Table5.28.	Rate of change of voltage at PCC in case of R-C load increasing and transient time include	98
Table5.29.	Rate of change of voltage at PCC in case of R-C load increasing and non-transient time include	98
Table5.30.	ROCOF results for pure resistive load disturbance	101
Table5.31.	ROCOF results for pure inductive load disturbance	103
Table5.32.	ROCOF results for pure capacitive load disturbance	105
Table5.33.	ROCOF results for pure R-L disturbance	107
Table5.34.	ROCOF results for pure R-C disturbance	109
Table5.35.	ROCPAD results for pure resistive load disturbance	111
Table5.36.	ROCPAF results for pure inductive load disturbance	113
Table5.37.	ROCPAD results for resistive-inductive load	117