
## STRUCTURAL ANALYSIS OF THE NORTH EASTERN DESERT AND NORTH AND CENTRAL SINAI, EGYPT

2 Por X

Ph. D. Thesis in Geology



By

### Mosbah Hussein Ibraheem Khalil

Central Gulf of Suez Exploration Department Head, Gulf of Suez Petroleum Co. (Gupco)

B.Sc. in Geology 1977 (Al Azhar University)
M.Sc. in Geology 1988 (Ain Shams University)

Department of Geology Faculty of Science Ain Shams University 1994 Annual I fourse

### **ACKNOWLEDGMENTS**

I would like to thank Prof. Dr. Mourad I. Youssef, Department of Geology, Ain Shams University for his advice in choosing the research point of this study and planning the work program. I am also indebted to him for his continuous supervision of the different phases of the study, for critical review of the manuscript, and for helpful discussions.

I am really indebted to Dr. Adel R. Moustafa, Department of Geology, Ain Shams University (now on loan to Kuwait University) for sharing Prof. Mourad I. Youssef in supervising this study and planning its phases. I am also indebted to him for supervising the interpretation of aerial photographs and space images, accompanying me in most of the field excursions to the study area, helping me in compiling the field data in an accurate format as well as reviewing and editing the manuscript.

My deep thanks are also due Mr. Gamal Hantar, former Exploration General Manager of the Gulf of Suez Petroleum Company (GUPCO) for sponsoring the field work of this study and providing a 4-wheel drive field vehicle and lodging and also for approval to draft and print the figures and enclosures of this dissertation in GUPCO. I would also like to thank Mr. Hantar as well as Mr. Bob Miles (Exploration Manager of Amoco Egypt) and Mr. Magid Abdel Haleem (Exploration Manager of the Egyptian General Petroleum Corporation) for their approval to use subsurface data of some wells in the northern Gulf of Suez area which were used in constructing subcrop maps for the present study.



I thank Miss Lucy Basta, administrative assistant, Department of Geology, Ain Shams University for her help in facilitating the use of aerial photographs of the study area.

I also thank the GUPCO drafting section especially Mrs. Mona, Messrs. Reda, Samir, Gaafar, Said, Bahgaat, and Sayed for their great help in drafting and printing some of the figures of the dissertation.

Central Library - Ain Shams University

## **CONTENTS**

|                                                          | <u>Page</u> |
|----------------------------------------------------------|-------------|
| ABSTRACT                                                 | viii        |
| LIST OF FIGURES                                          | х           |
| LIST OF PLATES                                           | xix         |
| LIST OF TABLES                                           | xix         |
|                                                          |             |
|                                                          |             |
| CHAPTER I: INTRODUCTION                                  |             |
| A- Location                                              | 1           |
| B- Physiography                                          | 3           |
| C- Accessibility                                         | 8           |
| D- Objectives                                            | 9           |
| E- Methodology                                           | 9           |
| F- Tectonic Setting                                      | 13          |
| a- The Northern Egypt Fold Belt                          | 13          |
| b- Suez Rift                                             | 15          |
| c- The Dead Sea Strike-Slip Fault                        | 15          |
| G- Previous Work                                         | 16          |
| a- Regional Studies on North Egypt                       | 16          |
| b- Studies on North and Central Sinai                    | 20          |
| c- Studies on the Folds of the North Eastern and Western |             |
| Deserts                                                  | . 24        |
| d- Studies on the Cairo-Suez District                    |             |
| e- Studies on the Basaltic Rocks of the Study Area       | . 23        |

| CHAPTER II: STRATIGRAPHY                                    | 30  |
|-------------------------------------------------------------|-----|
| A- Precambrian Rocks                                        | 32  |
| B- Paleozoic Rocks                                          | 32  |
| C- Mesozoic Rocks                                           | 33  |
| a- Triassic Rocks                                           | 33  |
| b- Jurassic Rocks                                           | 37  |
| c- Cretaceous Rocks                                         | 37  |
| D- Cenozoic Rocks                                           | 44  |
| a- Paleocene-Eocene Rocks                                   | 44  |
| b- Oligocene Rocks                                          | 48  |
| c- Miocene Rocks                                            | 50  |
| E- Main Unconformities in the Study Area                    | 52  |
| CHAPTER III: STRUCTURAL SETTING OF CENTRAL SINAI            | 58  |
| A- Structural Setting of the Themed Fault and Related Folds | 56  |
| a- Western Part of the Themed Fault Area                    | 56  |
| b- Eastern Part of the Themed Fault Area                    | 77  |
| c- Structural Analysis of the Themed Fault Area             | 91  |
| d- Mechanism of Deformation of the Themed Fault Area        | 94  |
| e- Time of Wrenching in the Themed Fault Area               | 95  |
| B- Structural Setting of the Gebel Somar Structure          | 95  |
| a- Structural Setting                                       | 95  |
| b- Mechanism of Deformation of Gebel Somar                  | 102 |

| CHAPTER IV: SOME OBSERVATIONS ON THE                           |     |
|----------------------------------------------------------------|-----|
| CRETACEOUS FOLDING IN THE NORTH EASTERN                        |     |
| DESERT AND THE NORTHERN PART OF THE GULF                       |     |
| OF SUEZ                                                        | 104 |
| A- Cretaceous Folding in the North Eastern Desert              | 104 |
| a- Gebel Shabrawet Structure                                   | 106 |
| b- Wadi Araba Monocline                                        | 112 |
| B- Cretaceous Folding in the Northern Part of the Gulf of Suez | 116 |
| a- The Ayun Musa-Sukhna Folds                                  | 116 |
| b- The Wadi Araba Offshore Monocline                           | 121 |
| c- Relationship between Late Cretaceous Folds in the Northern  |     |
| Gulf of Suez and Adjacent Onshore Areas                        | 122 |
|                                                                |     |
| CHAPTER V: NEOGENE DEFORMATION IN THE CAIRO-                   |     |
| SUEZ DISTRICT                                                  | 125 |
| A- Regional Structural Setting of the Cairo-Suez District      | 127 |
| B- Structures of the southern part of the Cairo-Suez District  | 130 |
| a- Gebel Mokattam Block                                        | 130 |
| b- Gebel Tura-Gebel Abu Shama Block                            | 132 |
| c- Gebel Qatamia Block                                         | 132 |
| d- Gebel Abu Treifiya-Gebel El Nuqura Block                    | 135 |
| e- Gebel Ataqa Block                                           | 138 |
| f- Gebel Akheider-Gebel El Ramliya Block                       | 148 |
| C- Structures of the Northern Part of the Cairo-Suez District  | 150 |
| a- Gebel Iweibid Structure                                     | 150 |
| b- Folded Upper Eocene and Younger Rocks in the Northern       |     |
| Part of the Cairo-Suez District                                | 154 |

| D- Structural Styles of the Cairo-Suez District               | 168 |
|---------------------------------------------------------------|-----|
| a- Contrasting Structural Styles of the Cairo-Suez District   | 168 |
| b- Folding of the Upper Eocene and Younger Rocks in the       |     |
| Cairo- Suez District                                          | 170 |
| c- En Echelon Fault Belts in the Cairo-Suez District          | 175 |
| E- Time of Structural Deformation in the Cairo-Suez District  | 179 |
| CHAPTER VI: STRUCTURAL FRAMEWORK OF NORTHEAST                 |     |
| EGYPT                                                         | 181 |
| A- Tectonic Elements in Northeast Egypt                       | 181 |
| a- Late Cretaceous Fold Belt                                  | 181 |
| b- The Themed Fault                                           | 183 |
| c- The Suez Rift and Associated Deformation in the Cairo-Suez |     |
| District                                                      | 183 |
| d- The Sinai "Hinge Belt"                                     | 184 |
| B- Tectonic History of Northeast Egypt                        | 185 |
| a- D1 Deformation                                             | 186 |
| b- D2 Deformation                                             | 187 |
| c- D3 Deformation                                             | 187 |
| d- D4 Deformation                                             | 189 |
| C- Hydrocarbon Potentialities of Northeast Egypt              | 190 |
| a- Traps                                                      | 190 |
| b- Source, Reservoir, and Cap Rocks                           | 191 |
|                                                               | 131 |
| CHAPTER VII: SUMMARY AND CONCLUSIONS                          | 193 |
| REFERENCES                                                    | 199 |
| VITA                                                          | 208 |

#### **ABSTRACT**

Detailed structural study of central Sinai and the north Eastern Desert and compilation of the results of the earlier study of north Sinai indicate the effect of four deformations on old pre-existing faults formed at the Late Triassic-Early Jurassic opening of the Neotethys and formation of a passive continental margin in north Africa. The earliest rejuvenation of these faults (D1 deformation) is Late Cretaceous (Early Late Senonian) and proceeded by dextral wrenching leading to the development of right-stepped en echelon folds above these subsurface faults in addition to large asymmetric folds (e.g. Gebels Yelleq, Maghara, and Halal folds) in the intervening areas. These folds form a continuous belt in north Sinai and the north Eastern Desert. This folding also affected the area now occupied by the northern part of the Gulf of Suez.

The second rejuvenation of the pre-existing faults (D2 deformation) is post-Middle Eocene-pre-Early Miocene and is manifested by dextral strike-slip movement on the Themed Fault. This deformation is probably related to stresses transmitted across the Early Mesozoic continental margin of Africa.

The third (D3) deformation is manifested in the Cairo-Suez district and proceeded by rejuvenation of the E-W oriented pre-existing faults by dextral transtension leading to the development of belts of left-stepped en echelon normal faults above the pre-existing faults. Also, NW-SE oriented normal faults were formed at the same time. Different structural styles in the Cairo-Suez district are related to the difference in mechanical properties of the rocks in the northern and southern parts of the district.

The D4 deformation represents the last recognized phase of rejuvenation of the pre-existing faults in northeast Egypt. This deformation is post-Early Miocene and proceeded by dextral wrenching in the Sinai "hinge belt" and by continued slip on the normal faults of the Cairo-Suez district. The dextral wrenching in the Sinai "hinge belt" is indirectly related to the slip on the Dead Sea Transform whereas the faulting in the Cairo-Suez district is related to continued opening of the Suez rift.

The structural framework of northeast Egypt has a direct effect on its hydrocarbon potentialities. Promising structural traps in this region are related to the Late Cretaceous folding. Several areas are recommended for hydrocarbon exploration where such folds are expected in the subsurface. Good source, reservoir, and cap rocks also encourage the search for hydrocarbons in the proposed areas.

# LIST OF FIGURES

|                                                                    | Page |
|--------------------------------------------------------------------|------|
| Fig. 1: Location map of the study area                             | 2    |
| Fig. 2: Main physiographic features of northeast Egypt             | 4    |
| Fig. 3: Location map showing the areas of field-mapping and field  |      |
| checking                                                           | 10   |
| Fig. 4: Tectonic provinces in the northeastern part of Egypt       | 14   |
| Fig. 5: Simplified geologic map of the northeastern part of Egypt  | 31   |
| Fig. 6: Location map of the compiled stratigraphic sections of the |      |
| study area                                                         | 34   |
| Fig. 7: Composite stratigraphic section of Sheikh Atiya area       | 35   |
| Fig. 8: Composite stratigraphic section of Gebel Khashm El Tarif   | 35   |
| Fig. 9: Composite stratigraphic section of El Themed area          | 36   |
| Fig. 10: Composite stratigraphic section of Abu Hamth-1 well       | 36   |
| Fig. 11: Composite stratigraphic section of the eastern scarp of   |      |
| the North Galala Plateau                                           | 38   |
| Fig. 12: Composite stratigraphic section of Gebel Shabrawet        | 38   |
| Fig. 13: Composite stratigraphic section of St. Paul area          | 40   |
| Fig. 14: Composite stratigraphic section of Gebel Thelemet         | 40   |
| Fig. 15: Composite stratigraphic section of St. Anthony area       | 41   |
| Fig. 16: Composite stratigraphic section of Abu Roash area         | 41   |
| Fig. 17: Composite stratigraphic section of Gebel El Meneidra      |      |
| El Kebira                                                          | 43   |
| Fig. 18: Composite stratigraphic section of the eastern scarp of   |      |
| Gebel Ataqa                                                        | 43   |
| Fig. 19: Composite stratigraphic section of Wadi Sudr              | 46   |

| Fig. 20 Composite stratigraphic section of Gebel Iweibid                   | 46 |
|----------------------------------------------------------------------------|----|
| Fig. 21: Composite stratigraphic section of the southern part of           |    |
| Gebel Ataqa                                                                | 47 |
| Fig. 22: Composite stratigraphic section of Gebel Geneifa and              |    |
| Gebel Gharra                                                               | 47 |
| Fig. 23: Composite stratigraphic section of Gebel El Anqabia and           |    |
| Gebel Nasuri                                                               | 49 |
| Fig. 24: Composite stratigraphic section of the area east of Helwan        | 49 |
| Fig. 25: Composite stratigraphic section of Gebel Gafra                    | 51 |
| Fig. 26: Composite stratigraphic section of Gebel Hamza                    | 51 |
| Fig. 27: Composite stratigraphic section of Gebel Homaiyra                 | 53 |
| Fig. 28: Composite stratigraphic section of Gebel Girba and                |    |
| Um Kateeb                                                                  | 53 |
| Fig. 29: Field photographs of Miocene rocks of Wadi Hagul                  | 54 |
| Fig. 30: Correlation chart of the stratigraphic sections of the study area | 55 |
| Fig. 31: Field panorama of the eastern scarp of Gebel Ataqa                | 57 |
| Fig. 32: Field photographs of the eastern scarp of Gebel Ataqa             |    |
| showing the unconformity between Turonian and Middle                       |    |
| Eocene and younger rocks                                                   | 57 |
| Fig. 33: Simplified geologic map of the Sinai Peninsula and the            |    |
| nearby part of the Naqb (Negev) desert                                     | 59 |
| Fig. 34: Simplified structural map showing the Sinai "hinge belt"          | 60 |
| Fig. 35: Landsat image of the western part of the Themed Fault             | 62 |
| Fig. 36: Vertical aerial photograph of Wadi Sudr and the western           |    |
| part of El Themed Fault                                                    | 63 |
| Fig. 37: Landsat image showing the eastern part of the Themed Fault        | 64 |
| Fig. 38: Simplified geologic map of the western part of the Themed Fault.  | 66 |

| Fig. 39: Aerial photograph of the western part of the Themed Fault         | 69 |
|----------------------------------------------------------------------------|----|
| Fig. 40: Geologic map of the Gebel El Risha segment of the Themed          |    |
| Fault                                                                      | 70 |
| Fig. 41: Horizontal slickenside striations and steps on the western        |    |
| part of Gebel El Risha segment of the Themed Fault                         | 71 |
| Fig. 42: Geologic map of Gebel El Risha-1 anticline.                       | 71 |
| Fig. 43: Geologic map of the Gebel El Dirsa segment of the Themed          |    |
| Fault                                                                      | 73 |
| Fig. 44: Field photograph showing fault breccia of the                     |    |
| Gebel El Dirsa segment of the Themed Fault                                 | 74 |
| Fig. 45: Aerial photograph of the Gebel El Dirsa doubly plunging syncline. | 75 |
| Fig. 46: Field photograph of the Gebel El Dirsa syncline                   | 75 |
| Fig. 47: Field photograph of the Gebel El Dirsa segment of the             |    |
| Themed Fault                                                               | 76 |
| Fig. 48: Field photograph of a small basalt dike intruded in the fault     |    |
| breccia of the Gebel El Dirsa segment of the Themed Fault                  | 76 |
| Fig. 49: Geologic map of the El Meneidra El Kebira and                     |    |
| El Meneidra El Saghira segments of the Themed Fault                        | 78 |
| Fig. 50: Aerial photograph of Gebel El Meneidra El Kebira doubly           |    |
| plunging anticline                                                         | 79 |
| Fig. 51: Field photograph of the Gebel El Meneidra El Kebira anticline     | 80 |
| Fig. 52: Field photograph showing apparent reverse slip of the Themed      |    |
| Fault in the core of Gebel El Meneidra El Kebira anticline                 | 81 |
| Fig. 53: Gently plunging slickensides on the Gebel El Meneidra             |    |
| El Kebira segment of the Themed Fault                                      | 81 |
| Fig. 54: Oblique slickensides and steps on the Gebel El Meneidra           |    |
| El Kebira segment of the Themed Fault                                      | 82 |

| Fig. 55: Field photograph showing the steep dip of the Gebel           |    |
|------------------------------------------------------------------------|----|
| El Meneidra El Saghira segment of the Themed Fault                     | 82 |
| Fig. 56: Geologic map of the easternmost part of the Themed Fault      | 84 |
| Fig. 57: Aerial photograph of the easternmost part of the Themed Fault | 85 |
| Fig. 58: Field photograph showing the easternmost part of              |    |
| the Themed Fault                                                       | 85 |
| Fig. 59: Field photograph of the easternmost part of the Themed Fault  | 86 |
| Fig. 60: Detailed field photograph of a segment of the Themed Fault    | 86 |
| Fig. 61: Field photograph showing gently plunging slickensides         |    |
| and steps on the eastern part of the Themed Fault                      | 87 |
| Fig. 62: Field photograph showing horizontal to gently                 |    |
| plunging slickensides on the surface of the Themed Fault               | 87 |
| Fig. 63: Detailed geologic map of the Themed Fault in the              |    |
| vicinity of Gebel Rishat El Themed                                     | 88 |
| Fig. 64: Aerial photograph showing dextral offset of Gebel             |    |
| Rishat El Themed doubly plunging anticline by the Themed Fault         | 89 |
| Fig. 65: Field photograph of Gebel Rishat El Themed                    |    |
| doubly plunging anticline                                              | 89 |
| Fig. 66: Field Panorama of the eastern nose of Gebel Rishat            |    |
| El Themed doubly plunging anticline                                    | 90 |
| Fig. 67: Field photograph of a doubly plunging anticline east          |    |
| of Gebel Rishat El Themed.                                             | 90 |
| Fig. 68: Rose diagram of the faults affecting the western              |    |
| part of the Themed Fault                                               | 92 |
| Fig. 69: Simplified geologic map of the Gebel Somar structure          | 96 |

| Fig. 70: Field panorama of the monoclines of Gebel Somar               | 98  |
|------------------------------------------------------------------------|-----|
| Fig. 71: Field photograph of Raqabat El Naam igneous dike              | 98  |
| Fig. 72: Aerial photograph of the western part of the Gebel            |     |
| Somar structure                                                        | 99  |
| Fig. 73: Aerial photograph showing several N-S to NNW oriented horsts  |     |
| and grabens in the northwestern part of Gebel Somar                    | 99  |
| Fig. 74: Field photograph showing N-S to NNW-SSE oriented              |     |
| normal fault in the western side of Gebel Somar                        | 100 |
| Fig. 75: Field photograph showing dip-slip slickensides on a N-S to    |     |
| NNW oriented normal fault in the western part of Gebel Somar           | 100 |
| Fig. 76: Diagonal slickensides and steps on a N-S fault in the western |     |
| side of Gebel Somar                                                    | 101 |
| Fig. 77:Structural form-line map of Gebel Somar                        | 103 |
| Fig. 78: Geological map of the north Eastern Desert                    | 105 |
| Fig. 79: Boreholes in the north Eastern Desert and the eastern part of |     |
| the Nile Delta showing basal Eocene unconformity                       | 107 |
| Fig. 80: Block diagram representing the structural setting of          |     |
| Gebel Shabrawet                                                        | 108 |
| Fig. 81: Geologic map of Gebel Shabrawet area                          | 109 |
| Fig. 82: Field panorama of the Gebel Shabrawet anticline               | 110 |
| Fig. 83: Horizontal slickensides and steps on the fault bounding the   |     |
| southern limb of the Gebel Shabrawet anticline                         | 111 |
| Fig. 84: Field photograph showing the reverse fault of Gebel Shabrawet | 111 |
| Fig. 85: Field photograph of the southern limb of the Wadi Araba       |     |
| structure                                                              | 113 |
| Fig. 86: Field panorama showing vertical Lower Senonian strata on      |     |
| the southern side of Wadi Araba                                        | 114 |