AN INTEGRATED SEISMO-FACIES AND SEISMO-TECTONIC STUDY OF THE NILE DELTA OF EGYPT, UTILIZING COMMON-DEPTH POINT SEISMIC REFLECTION DATA

A THESIS

Submitted for Fulfillment of The Requirements for the Degree of Ph.D. in

GEOPHYSICS

By

SALAH SHEBL SALEH AZZAM (M.Sc. in Geophysics)

Department of Geophysics
Faculty of Science
Ain Shams University
Egypt

1994

LIST OF CONTENTS

CHAPTER	SUBJECT	PAGE
Contents		
List of Figures.		iv
List of Tables.		x ii
Acknowledgeme	ent	xiii
Abstract		xi v
I. GEOLOGIC SET	TING.	
1. Introducti	ion	1
2. Surface G	Geology	. 3
3. Subsurfac	ee Stratigraphy	3
4. Geomorpl	hology	21
5. Structural	l Set-up.	. 31
6. Tectonisn	n	36
7. Geologic	History.	. 43
8. Aim of th	ne Study	. 49
II. SEISMIC VELO	OCITY.	
1. Introduct	tion	. 52
2. Relation	Between Average and Root Mean Square Velocities.	. 54
3. Average	Velocity Gradients	. 68
4. Root Me	an Square Velocity Distributions.	. 78
5. Drift Bet	ween Time-Depth Curves Derived From Velocity	
Analysis	and Well Data	. 86
6. Time Co	rrective Deviations	. 90

CHAP	TER SUBJECT	PAGE
III. SE	EISMIC TECTONICS.	
	1. Introduction.	102
	2. Geo-Seismic Conditions	102
	1. High Velocity Layers	103
	2. Thick Shale Masses	. 103
	3. Non-Continuity of Horizons.	. 104
	4. Cut-Off Features	104
	3. Seismic Acquisition	. 105
	4. Seismic Processing.	108
	5. Seismic Interpretation.	109
	6. Structural Elements.	. 111
	7. Tectonic Inferences	. 126
IV. SE	ISMIC MODELLING.	
	1. Introduction.	128
	2. Theory of Seismic Modelling.	129
	3. Application of Seismic Modelling in The Study Area.	132
V. SEIS	SMIC STRATIGRAPHY.	
	1. Introduction	160
	2. Seismic Stratigraphic Review.	161
	3. Seismic Expressions of Stratigraphic Features.	. 163
	4. Seismic Reflection Characteristics	. 163
	5. Iso-Time Subdivisions.	187

CHAPTER	SUBJECT	PAGE
6. Lithologic	Distribution	201
7. Deposition	al Environments.	212
	D CONCLUSIONS	
REFERENCES		233
ARABIC SUMMARY	Υ.	

FIG. NO. SUBJECT	PAGE
40. Time-depth curves derived from velocity analysis and velocity	
measurements of well Sidi Salem-1.	89
41. Time-depth curves derived from velocity analysis and velocity	
measurements of well Qawasim-1.	91
42. Time-depth curves derived from velocity analysis and velocity	
measurements of well North Bilgas-1.	92
43. Time-depth curves derived from velocity analysis and velocity	
measurements of well Abadiya-1.	93
44. Time deviation map on top El-Wastani Formation.	95
45. Time deviation map on top Kafr El-Sheikh Formation.	
46. Time deviation map on top Abu Madi Formation.	
47. Time deviation map on top Qawasim Formation.	
48. Time deviation map on top Sidi Salem Formation.	
49. Time deviation map on top Qantara Formation.	
50. Shot point location map.	
51. Isochronous reflection map on top Masajid Formation.	112
52. Isochronous reflection map on top Nubia Complex Formation.	
53. Isochronous reflection map on top Chalk Formation.	
54. Isochronous reflection map on top Qantara Formation.	
55. Isochronous reflection map on top Sidi Salem Formation.	
56. Isochronous reflection map on top Qawasim Formation.	
57. Isochronous reflection map on top Abu Madi Formation.	119
58. Isochronous reflection map on top the Lower part of Kafr El-Sheikl	121
Formation.	122

FIG. NO. SUBJECT	PAGE
59. Isochronous reflection map on top the Upper part of Kafr El-Sheikh	11102
Formation.	. 123
60. Isochronous reflection map on top El-Wastani Formation.	
61. Azimuth-length frequency diagram of fault elements capping	127
formation tops.	125
62. Systems of regional structural deformations in Egypt.	127
63. Stresses of regional tectonic deformations in Egypt.	127
64. Time-distance relationship for a palne-dipping reflector and constant	127
interval velocity.	131
65. Seismic line : CM-223.	135
66. Time model of line: CM-223.	136
67. Velocity-plot of line : CM-223.	137
68. Ray-tracing plot of line: CM-223.	138
69. Depth model of line: CM-223.	139
70. Seismic line: MAN-401.	140
71. Time model of line: MAN-401.	141
72. Velocity-plot of line: MAN-401.	142
73 Ray-tracing plot of line: MAN-401	143
74. Depth model of line: MAN-401	144
75. Seismic line: K-S-419.	145
76. Time model of line: K-S-419.	146
77. Velocity-plot of line: K-S-419.	147
78. Ray-tracing plot of line: K-S-419.	148
79. Depth model of line: K-S-419.	149

	FIG. NO.	SUBJECT	PAGE
;	80. Seismic line: MAI	N-467	150
8	31. Time model of line	e: MAN-467	. 151
8	32. Velocity-plot of lin	ne: MAN-467	152
8	33. Ray-tracing plot of	Fline: MAN-467	. 153
8	4. Depth model of line	e: MAN-467	154
8	5. Seismic line: MAN	I-485	155
8	6. Time model of line	: MAN-485	156
8	7. Velocity-plot of line	e: MAN-485,	157
8	8. Ray-tracing plot of	line : MAN-485.	158
		: MAN-485	159
		phenomenon in unit IV reflectors of seismic line	
			166
91		llel phenomenon in unit IX reflectors of seismic line	
			167
92		nt phenomenon in unit II reflectors of seismic line	
			168
93		phenomenon in unit IX reflectors of seismic line	
			169
94		phenomenon in unit VI reflectors of seismic line	,
		· · · · · · · · · · · · · · · · · · ·	170
95.		sigmoid to oblique phenomenon in unit VI	
		ine MAN-480	171
96.		menon in unit V reflectors of seismic line	4/1
			172

FIG. NO	O. SUBJECT	PAGE
97. Exa	mple of shingled phenomenon in unit V reflectors of seismic line	
	211	173
	mple of lens phenomenon in unit V reflectors of seismic line	
	225	174
	mple of toplap phenomenon in unit VII reflectors of seismic line	
	N-485	175
	mple of downlap phenomenon in unit VI reflectors of seismic line	
	-211	176
	mple of chaotic phenomenon in unit IX reflectors of seismic line	
	-223	178
102. Seisr	mic reflection characteristics map of unit I (Bilqas -	
	Ghamr Formations).	179
103. Seisn	nic reflection characteristics map of unit II (El-Wastani -	
	er part of Kafr El-Sheikh Formations).	180
	nic reflection characteristics map of unit III (Middle part of	
	El-Sheikh Formation).	181
105. Seism	nic reflection characteristics map of unit IV (Lower part of	
	El-Sheikh Formation).	182
106. Seism	ic reflection characteristics map of unit V (Abu Madi Formation).	184
107. Seism	ic reflection characteristics map of unit VI (Qawasim Formation).	185
108. Seism	ic reflection characteristics map of unit VII (Sidi Salem Formation). 186
	ic reflection characteristics map of unit VIII (Qantara Formation).	188
	ic reflection characteristics man of unit IX (Challe Formation)	

FIG. NO. SUBJECT	PAGE
111. Seismic reflection characteristics map of unit X (Nubia Complex -	
Alamein Formations).	190
112. Time-thickness map of unit I (Bilqas - Mit Ghamr Formations)	192
113. Time-thickness map of unit II (El-Wastani - Upper part of	
Kafr El-Sheikh Formations).	. 193
114. Time-thickness map of unit III (Middle part of Kafr El-Sheikh Forma	
115. Time-thickness map of unit IV (Lower part of Kafr El-Sheikh Format	
116. Time-thickness map of unit V (Abu Madi Formation).	
117. Time-thickness map of unit VI (Qawasim Formation).	
118. Time-thickness map of unit VII (Sidi Salem Formation).	
119. Time-thickness map of unit VIII (Qantara Formation)	200
120. Time-thickness map of unit IX (Chalk Formation).	202
121. Time-thickness map of unit X (Nubia Complex - Alamein	
Formations).	203
122. Lithologic distribution map of unit I (Bilqas - Mit Ghamr	
Formations)	205
123. Lithologic distribution map of unit II (El-Wastani - Upper part of	
Kafr El-Sheikh Formations).	206
124. Lithologic distribution map of unit III (Middle part of Kafr El-Sheikh	
Formation).	207
125. Lithologic distribution map of unit IV (Lower part of Kafr El-Sheikh	
Formation).	208
126. Lithologic distribution map of unit V (Abu Madi Formation).	209
127. Lithologic distribution map of unit VI (Qawasim Formation).	210

r.	IG. NO. SUBJECT	PAGE
12	28. Lithologic distribution map of unit VII (Sidi Salem Formation).	211
12	29. Lithologic distribution map of unit VIII (Qantara Formation)	213
	0. Lithologic distribution map of unit IX (Chalk Formation).	214
	1. Lithologic distribution map of unit X (Nubia Complex - Alamein	
	Formations).	215
13	2. Seismo-facies distribution map of unit I (Bilqas - Mit Ghamr	
	Formations)	216
13:	3. Seismo-facies distribution map of unit II (El-Wastani - Upper	
	part of Kafr El-Sheikh Formations).	217
134	4. Seismo-facies distribution map of unit III (Middle part of	
	Kafr El-Sheikh Formation).	218
135	5. Seismo-facies distribution map of unit IV (Lower part of	
	Kafr El-Sheikh Formation).	220
136	Seismo-facies distribution map of unit V (Abu Madi Formation).	221
	Seismo-facies distribution map of unit VI (Qawasim Formation)	222
	Seismo-facies distribution map of unit VII (Sidi Salem Formation).	223
	Seismo-facies distribution map of unit VIII (Qantara Formation).	224
	Seismo-facies distribution map of unit IX (Chalk Formation).	225
	Seismo-facies distribution map of unit X (Nubia Complex -	443
	Alamein Formations)	226
		440

LIST OF TABLES

TABLE NO.	SUBJECT	PAGE
1. The heterogeneity	factor (g) of Qallin-1 well.	. 55
	factor (g) of Kafr El-Sheikh-1 well.	
	factor (g) of Sidi Salem-1 well.	
	factor (g) of Qawasim-1 well.	
	factor (g) of Abadiya-1 well.	56
	factor (g) of North Bilqas-1 well.	57
	en the seismo-facies units and the rock units.	165

ACKNOWLEDGEMENT

The author is greatly grateful to prof. Dr. Ahmed S.A.Abu El-Ata, professor of Geophysics, Geophysics Department, Faculty of science, Ain Shams University, for suggesting the point of research, enthusiastic encouragement and fruitful discussion. Moreover, most of the literatures cited is attributed to his efforts without which the work would not have been attained its present standard.

The author is also, greatly grateful to **Prof. Dr. Samira H. Abd El-Baki**, professor of Geophysics and Head of the Exploration Department, Egyptian Petroleum Research Institute, for offering the facilities of the department to achieve this work, also, for her scientific advice, valuable discussion and critical reviewing of the manuscript that added greatly to the materialism of this work.

Special thanks are to the staff of the Geophysics, Exploration Department, Egyptian Petroleum R. Ins. for critical reviewing and help me.

The author is particulary indebed to **Dr. Ashraf El-Ghoneimi**, Geology Department, Faculty of science, Zagazig University, for his scientific advice, valuble discussion, tracing and critical reviewing of the manuscript that added greatly to the materialism of this work.

The author is also, greatly grateful to Dr. Mahmoud Abd El-Haleim, Conoco Company, for offering the facilities for providing some of the basic data in the study area.

Special thanks are to the staff of the Egyptian General Petroleum Corporation for providing the basic data of the study area.

Without this very considerable help, which is gratefully acknowledged, the achievement of this work could not have been brought to fruition.

ABSTRACT

The present thesis is devoted to the geophysical interpretation of the seismic data in the Nile Delta area, to delineate the physical , structural and stratigraphical features affecting the different litho-stratigraphic units composing the sedimentary section .

The available data utilized are a collection of geological and geophysical information. However, the geological data are in the form of lithologic logs of nine wells scattered in the study area. Moreover, the geophysical data are in the form of sixty two seismic lines and the comparable velocity measurements needed for the seismic work.

Root mean square velocity is related mathematically to the average velocity through the velocity heterogeneity factor .Root mean square velocities and average velocities of a number of wells are calculated and plotted to define the analytical relation between them. The drift between these velocities is a measure for the heterogeneity may exist between the lithologic contents. Average velocity gradient maps for the tops of El-Wastani ,Kafr El-skeikh,Abu Madi,Qawasim,Sidi Salem and Qantara Formations are drawn and analyzed. Consistent style of variation of the high and low velocity anomalies is found. Root mean square velocity profiling is carried out , from the stacking velocities of a number of seismic lines. These profiles reflect the subdivision of the evaluated section into a number of tears expressing the associating variations in the encountered stratigraphy of the shallow section. Moreover, the drift between time -depth curves derived from velocity analysis and these derived from well data are calculated and plotted for the wells: Kafr EL-Sheikh-1, Sidi Salem -1,Qawasim-1 ,Abadiya-1 and North Bilqas-1.The vertical drifts of the wells are followed laterally through a number of time deviation maps of the fore-mentioned rock units. These time deviations can be used for justifying the RMS velocities of the stacked sections in the areas (between wells)of no available velocity measurements needed for calculating the optimum average velocities.

The seismic reflection data are interpreted to establish the structural features affecting the relatively shallower and intermediate sections of the Nile Delta of Egypt. These features are mapped on the tops of Masajid, Nubia Complex, Chalk, Qantara, Sidi Salem, Qawasim, Abu Madi, Kafr EL-Sheikh (lower and upper parts) and EL-Wastani formations. The mapped structural elements are varied

from folds (anticlines and synclines) and faults of the normal type. The deduced structural inferences are ranged in their trends from being NE-SW in the Middle- Late Mesozoic, to be NW-SE in the Early Tertiary and to be E-W in the Late Tertiary.

Added to these ,five seismic sections CM-223 , Man-401,K-S-419,Man-467 and Man-485 are selected for presenting the growth influence and branching effect accompanying the prograding of the investigated area, Time plots of the five models are established to show the preliminary situation of the tops of the selected formations for the studied. Velocity models of these sections are plotted to exhibit the constant interval velocities needed for the conversion of time models into depth models. Ray-tracing plots of the five models are constructed to reveal the degree of success in selecting the proper velocities and to execute the needed adjustments of these velocities for more correct situation of the modelled horizons. Finally , the depth model of the five seismic sections are established to reflect the depth migrated seismic sections with the structural styles of the studied area.

The seismic stratigraphic analysis procedures, involving seismic sequence analysis, seismic facies analysis and seismic unit analysis where proceeded in order to subdivide the Cretaceous to Recent sedimentary section into seismic stratigraphic units and then ,to detail their stratigraphic manifestations. These units essentially are differed in their reflection characteristics and stratigraphic expressions. Accordingly four sets of maps where sketched for each of these units. These are the seismic reflection pattern, the lithology distribution maps, the seismo-facies types and the time thickness maps. All these maps were used to infer the depositional environmental conditions of the investigated rock units. In this respect, the seismic reflection characteristics are ranged from parallel to divergent to sigmoid to oblique to fill to chaotic. Also, the lithology distributions are varied from clay to sand to shale to limestone. Added, the time thicknesses are ranged from 50 ms to 1200 ms. Moreover the depositional environments are varied from continental to littoral to neritic to bathyal to abyssal.