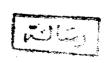
Ain Shams University Faculty of Engineering Public Works Department

Development and Modification of Techniques and Software for Preparing Digital Maps in an Appropriate Format for Conversion to Geographic Information Systems

By
Amr Hosseiny Abd-Elrahman
B.Sc. Civil Engineering
Ain Shams University, 1990

A Thesis Submitted in Partial Fulfilment for the Requirement of the Degree of Master of Science in Civil Engineering (Public Works Dept. - Surveying)



Supervised By

Prof. Dr. Mohamed M. Nassar Professor of Surveying and Geodesy Ain Shams University

Dr. Ibrahim F. Shaker
Lecturer of Surveying and Photogrammetry
Ain Shams University

CAIRO - EGYPT 1994

Ain Shams University Faculty of Engineering Public Works Department

Approval Sheet

Development and Modification of Techniques and Software for Preparing Digital Maps in an Appropriate Format for Conversion to Geographic Information Systems

By
Amr Hosseiny Abd-Elrahman
B.Sc. Civil Engineering
Ain Shams University, 1990

This thesis for M.Sc. degree had been approved by:

Name	Signature
Prof. Dr. Mohamed S. Al-Gazali.	
Proffessor of Surveying and Photogrammetry	House Chas
Faculty of Engineering, Cairo University	019
Prof. Dr. AbdelHadi S. AbdelAal.	A CA
Professor of Surveying and Geodesy	Martinay 5. 1
Faculty of Engineering, Ain Shams University	
Prof. Dr. Mohamed M. Nassar.	d Now
Professor of Surveying and Geodesy	
Faculty of Engineering, Ain Shams University	

STATEMENT

The dissertation is submitted to Ain Shams University for the degree of Master of Science in Civil Engineering.

The work included in this thesis was carried out by the author in the Department of Public Works Ain Shams University from October, 1990 to December, 1994.

No part of this thesis has been submitted for a degree or a qualification of any other University Institution.

Date: / /1994

Name: Amr Hosseiny Abd-Elrahman

Signature:

ACKNOWLEDGMENTS

The author is greatly indebted to his supervisor Prof. Dr. Mohamed M. Nassar, Professor of Surveying and Geodesy, Public Works Department, Faculty of Engineering, Ain Shams University, for his invaluable support, encouragement and advice from which the author has continuously gained enthusiasm and confidence. I also wish to express my appreciation to him for the useful information I have obtained from his own library and for his concern and careful revision of the manuscripts of this thesis which immeasurably improved both the style and contents of the thesis. Therefore, I am indeed indebted to him and no words can adequate express my gratitude to him.

The author wishes to acknowledge his supervisor Dr. Ibrahim F. Shaker, Lecturer of Photogrammetry and Surveying, Public Works Department, Faculty of Engineering, Ain Shams University, who has helped in providing the concepts and the ideas which were developed in this thesis and under whose auspices the research work in this thesis was undertaken and achieved its objectives.

I would like to express my sincere gratitude to Dr. Osman Akif, Lecturer of Photogrammetry and Surveying, Public Works Department, Faculty of Engineering, Ain Shams University, for his great help during my first recognition with GIS; his valuable advice and encouragement during the development of the thesis; his concern and useful revision of the first draft of this thesis.

The development described in this thesis would not have been possible without the help and cooperation of a number of other individuals. Thanks must go first to Eng. Gamal Ibrahim, chairman of Cairo Engineering and Manufacturing Company, for providing the used data as well as some the software and hardware facilities. Special appreciation are extended to Eng. Wael Mansour at the GIS Department, Egyptian Surveying Authority and Eng. Hany Abd-El Mohsen at Cairo Engineering and Manufacturing Company who have been incredibly helpful in all consultations concerning the used GIS software and providing many GIS specialized technical papers, required data as well as some computational facilities.

Special thanks go to the other staff of the Cairo Engineering and Manufacturing Company with whom I stayed for about Six months getting all their cooperation and encouragement during the preparation of this thesis.

Last but not the least, I dedicate this thesis to my father, mother, grand mother and brother whose their prayers, support and encouragement have been a great help to me through this study.

Abstract

Geographic information systems (GIS) are the result of more than two decades of significant development in digital mapping and Recently, geographic information systems have become a hot topic among several users. Although computer processing has been applied to geographical problems for more than a quarter of century, it appears that there must be something different and more important about GIS that has caused so many diverse groups to invest so many resources. However, the process of building a geographic information system is not easy and requires highly professional skills. In addition, such process is usually faced with many problems that have to be handled in a certain way to get practical and economic solutions. Some of the most sophisticated problems encountered in this field are those concerning digital data conversion, as a geographic information data source, into geographic information systems. Such problems significant differences in specifications the from result purposes between those two systems.

Accordingly, the current has been oriented towards solving some of the above problems in such a way to achieve the most economical, practical and simplest solutions accompanied with the hardly required software used to support and facilitate such solutions. More explicitly, problems investigated in this thesis can be distinguished as: the polygon features creation; the generation of features centerlines problems which do not, generally, exist in digital map data; the contour enhancement problems which include completion of stopped contour lines in steep areas and elimination of gaps within the contour features; and the separation of text information apart from spot heights digital map data. Each of these problems are solved providing certain developed software modules to support and facilitate the use of the suggested solutions.

aided computer this context, a certain advantageous drafting system and its customizing facilities have been utilized in developing the necessary for solving the above specific treated problems. Therefore, this developed technique can be efficiently used for any required preparations for digital map data, before they can be transferred to a specific geographic information system.

In order to ensure the reliability of the proposed solutions and their associated results and conclusions, a typical GIS pilot project has been investigated. Data handled through this investigation is a 1:5000 digital map data representing the base maps for certain area in a sister country lying in south west of Asia. The project basic specifications and all the practical steps for its requirements. Two commercial software carefully analyzed. ате execution packages are used, the first is the AutoCAD software representing computer aided drafting system and the second is a popular a powerful specific geographic ARC/INFO software which is two commercial packages Each of those information system. configurations. Accordingly, different hardware requires hardware platforms are used to support the two used software systems, the first platform is Personal Computers provided with high storage facilities and the other one is the very efficient and powerful DEC stations.

obtained results from the present investigation have The declared the advantages of the integration between the computer aided drafting systems as an inexpensive and simple software (and as actual and the geographic information systems hardware) specialized geographic information software (and hardware). This integration is very powerful specially when concerning digital map data preparation for geographic information systems. The proposed solutions yielding such integration have proved their reliability and practicality, from both time and storage viewpoints, through the in particular when flexibility of the two types of systems languages their embedded programming concerning customized menus. Therefore, it is recommended to pay further attention to other problems, other than those investigated herein, that may appear in digital map data preparation to GIS trying to perform some sophisticated GIS functions with much simpler computer aided drafting software. In addition,, it is recommended to consider the future application of the digital map data in GIS during the digital data capture stage, to facilitate the digital data conversion between the two systems.

TABLE OF CONTENTS

Acknowledgment	iv
Abstract	
Table of Contents	
	хііі
	xiv
1. INTRODUCTION:	
1.1 Geographic Information System (GIS) definitions	
1.2 GIS Major components	6
1.2.1 Computer hardware	
1.2.2 Computer software modules	. 9
1.3 Advantages and Problems Associated with GIS	10
1.4 Motivation Behind the Present Study	
1.5 Objectives of the Thesis	13
1.6 Summary of Contributions	14
1.7 Scope of Presentation	16
2. FUNDAMENTAL ASPECTS RELATED TO GEOGRAPHI	(C
INFORMATION SYSTEMS (GIS)	
2.1 Data Capture Techniques and Devices	18
2.1.1 Non.Spatial Data Acquisition	19
2.1.2 Spatial Data Acquisition	20
2.1.2.1 Existing Hard Copy Maps	
2.1.2.2 Remote Sensing Data	25
2.1.2.3 Photogrammetric Data	
2.1.2.4 Exchange of Digital Data	27
2.2 Data output Format and Devices	28
2.2.1 Vector Display Devices	29
2.2.2 Raster Display Devices	30
2.3 Spatial Data Structures	31
2.3.1 Raster data Structure	31
2.3.2 Vector data Structure	32
2.3.2.1 Spaghetti Vector Data model	
2.3.2.2 Topologically Structured Vector Data model	39

2.4 Database Modeling and Management Systems	43
2.4.1 Database definition.	44
2.4.2 Data Base Management System	44
2.4.3 Database models	45
2.4.3.1 Hierarchical Database Model	
2.4.3.2 Network Database Model	46
2.4.3.3 Relational Database Model	
2.5 GIS and Computer Graphics	51
2.5.1 Computer Aided Drafting (CAD) Systems	
2.5.2 Automated Mapping/Facility Mapping	
(AM/FM)systems	52
2.5.3 Geographic Information System (GIS)	53
2.6 Errors in Digital Map Data	
2.7 Software module	59
2.7.1 ARC/INFO Software	61
2.7.1.1 ARC/INFO Data Model	61
2.7.1.2 ARC/INFO Software Sub.modules	65
2.7.1.3 ARC/INFO Application Macro Language	70
2.7.2 AutoCAD Software	
2.7.2.1 AutoCAD Data Model	
2.7.2.2 AutoCAD Customizing Techniques	77
3. DESCRIPTION AND EXECUTION STEPS OF THE TE	STED
PILOT PROJECT	
3.1 Description of the Pilot Project Area	8 0
3.2 Used Hardware and Software System Configuration	
3.3 Project Execution Steps	
3.4 Understanding the Data Base	
3.4.1 Data Base Elements	
3.4.2 Defining Storage Parameters	
3.5 Identify, Review and Prepare Digital Data	
3.6 Input of Spatial Data	
3.7 Edit and Create Topology	
3.8 Input of Attribute Data	
3.9 manage and Manipulate theData	
3.10 Performing Geographic Analysis and Presenting its Resu	
2.10 Lettottimis Geographic Analysis and Liesening its vesu	163.110

4. PRACTICAL SOLUTIONS FOR SOME SPECIFIC PROBLEMS RELATED TO DIGITAL DATA PREPARATION FOR GIS VIA THE DEVELOPMENT OF NECESSARY SOFTWARE MODULES

4.1 Specific Problems to be Investigated	121
4.2 problems in Creating Polygon Features from Digital	
	124
	.124
4.2.2 Suggested Solutions	131
4.2.2.1 Usage of Repeated Common Boundary Edges	
(Multicopying)	.132
4.2.2 2 Using AutoCAD Extended Data Facilities	133
4.2.2.3 Using Special Coding of Layer Names	143
4.2.3 developed Software Modules	148
4.3 Problems of Generating Features Center Lines	166
4.3.1 Problem Description	168
4.3.2 Suggested Solutions	169
4.3.3 Developed Software Modules	169
4.4 Enhancement of Contour Features	178
4.4.1 Problems Description	180
4.4.2 Suggested Solutions	182
4.4.3 Developed Software Modules	185
4.5 Spot Heights and Text Separation	194
4.5.1 Problem Description	194
4.5.2 Suggested Solution	195
4.5.3 Developed Software Module	195
4.6 Closing Remarks	196
5. SUMMARY, CONCLUSIONS AND RECOMMENDATION	1
5.1 Summary	202
5.2 Conclusions	205
5.2.1 Conclusions Concerning the Investigated Pilot	
Project	205
5.2.2 Conclusions Concerning the Investigated Problems in	
Converting Digital Map Data to GIS	
5.3 Recommendations	207

REFERENCES	209
APPENDIX (A) TYPICAL DRAWING EXCHANGE FORMA	Γ
(DXF) FOR AN AutoCAD DRAWING FILE	
CONTAINING ONE POLYLINE ENTITY	215
APPENDIX (B) DEVELOPED SOFTWARE MODULES	235

LIST OF TABLES

Table Title	Page
2-1 An AutoCAD Polyline Entity Header Section Database	
as Appears for an AutoLISP Programmer	75
2-2 An AutoCAD Polyline Vertex Database as Appears	
for an AutoLISP Programmer	76
3-1 Default ARC/INFO Topological Attribute Tables	89
3-2 Project Specifications ARC/INFO Coverages and	
their Associated Features Attribute Table	92
3-3 ROADL Attribute Table Data Dictionary	
3-4 The AutoCAD Layer Names and their Associated	
Features	100
3-5 Items of the ACODE table Created Using	
the ARC/INFO DXFARC Command	105
3-6 Items of the XCODE table Created Using the	
ARC/INFO DXFARC Command	105
3-7 Actually Specified Coverages Names and their Correspo	
Appended Preliminary Coverages Names	
4-1 Storage Requirements in Bytes Using the MultiCopying	
and Extended Data Solutions	142
4-2 Layers and Their Corresponding Assumed Codes	
4-3 The First 30 Records of the Created ACODE Table	
4-4 SEL-COPY Icons Names and their Corresponding	
Target Layers Names	155
4-5 X-CP-LAY Icons Names and their Corresponding	
Taget Layers Names	159
4-6 The First 30 Records of the Created AAT	

LIST OF FIGURES

Fig. Title	Page
2-1 Vector Data Structure Elements: Points; Lines; and Areas	33
2-2 Types of Line Features	35
2-3 Types of Polygon Data	38
2-4 Basic Forms of Topology	41
2-5 The Hierarchical Database Model	47
2-6 The Network Database Model	48
2-7 The Relational Database Model	50
2-8 The Possible Types of Geometric Errors in Digital Map Dat	a57
2-9 Accepted and Unaccepted Pseudo Nodes Geometric Errors.	58
2-10 Dangling Nodes Geometric Errors	60
2-11 The ARC/INFO Data Model	64
3-1 The Area Under Investigation Indicated on Sultanate of	
Oman Map	81
3-2 The Area Under Consideration Represented in 12 Digital	
Map Sheets	82
3-3 General Project Steps	84
3-4 Examples of Original Digital Data Mistakes	
3-5 Effect of the CLEAN Command.	112
4-1 Specific Investigated Problems in Data Presentation for GIS	123
4-2 Vegetation Layer Before Applying the Proposed	
Processing Techniques	125
4-3 Foot Paths Layer Before Applying the Proposed	
Processing Techniques	
4-4 Polygon Bounded by Different Line Segments	128
4-5 Linear Segments Bounds two Polygons in Different Layers.	128
4-6 Common Boundary Between Two Polygons in	
0Different Layers	130
4-7 Examples of Different Adjacent Features Lying in	
Different Layers	
4-8 Cultivation Layer of Figure 4-2 After processing	
4-9 Fruitful Trees Layer of Figure 4-2 After Processing	
4-10 Palm Trees Layer of Figure 4-2 After rocessing	136
4-11 Foot Paths Layer of Figure 4-3 After Processing	137

4-12 List of the Header Database Section, As Appears to an