
### Nutrition of the High Risk Newborn

### Essay

Submitted for Partial Fulfillment of Master Degree in Paediatrics



By William

49526

Dr. Ethar Hussein El-Azghal
M.B., B.Ch.

618.9201 E.H

Under Supervision Of

Jarly medita

Prof. Dr. Mohamed Ahmed Awadalla

Professor of Paediatrics Faculty of Medicine Ain Shams University

M Duradate

FACULTY OF MEDICINE AIN SHAMS UNIVERSITY

1993



سويه النشاء آيه ۱۱۲



### ACKNOWLEDGEMENT

I would like to express my deepest gratitude to our great Professor Dr. Mohamed Ahmed Awadalla, Professor of Paediatrics, Faculty of Medicine, Ain Shams University, under whose supervision I had the honour to proceed this work. I am actually indebted to his generous encouragement, continuous supervision, useful suggestions, and kind help. Shall I never forget.

### **CONTENTS**

| INTRODUCTION & AIM OF THE WORK                 | Pages |
|------------------------------------------------|-------|
| I. NUTRITIONAL REQUIREMENTS OF THE NEWBORN     | 1     |
| II. IDENTIFICATION OF THE HIGH RISK NEWBORN    | 25    |
| III. NUTRITION OF THE HIGH RISK NEWBORN        | 31    |
| IV. ENTERAL FEEDING                            | 37    |
| I. Breast Feeding                              | 37    |
| II. Formula Feeding                            | 50    |
| III. Nutrient and Multivitamin Supplementation | 68    |
| V. FORCED ENTERAL FEEDING                      | 73    |
| VI. TOTAL PARENTERAL NUTRITION (TPN)           | 88    |
| VII. ROUTES OF ADMINISTRATION OF TPN           | 103   |
| VIII. PARENTERAL NUTRITION SOLUTIONS           | 140   |
| IX. TOTAL PARENTERAL NUTRITION MONITORING      | 191   |
| X. COMPLICATIONS OF TOTAL PARENTERAL NUTRITION | 197   |
| SUMMARY & CONCLUSION                           | 223   |
| REFERENCES                                     | 225   |
| ARABIC SUMMARY                                 |       |

### **ABBREVIATIONS**

a.a. : Amino acids

AAPCON: American Academy of Pediatrics, Committee on Nutrition

BCAA : Branched-chain-amino acids
BPD : Broncho-pulmonary dysplasia

BUN : Blood urea nitrogen

CNS : Central nervous system

DIC : Dissemenated intravascular coagulopathy

EFA : Essential fatty acid
GIT : Gastrointestinal tract

HIV : Human immunodificiency virus

HMF : Human milk fortifiersICH : Intracranial haemorrhage

Ig : Immunoglobulin
IM : Intramuscular

IUGR : Intrauterine growth retardation

IV : Intravenous

IVC : Inferior vena cava
LBW : Low birth wieght
LPL : Lipoprotein lipase

MCTs : Medium-chain triglyceridesMSUD : Maple syrup urine diseaseMVI : Multivitamin infusion

NCHS : National Center for Health Statistics

NICU : Neonatal Intensive Care Unit

PCSC : Percutaneous insertion of a silastic central venous catheter

PDS : Post ductal stenosis
PN : Parenteral nutrition
PT : Prothrombin time

PTT : Partial thromboplastin time
PUFA : Poly unsaturated fatty acids

RDAs : Recommended dietary allowances

RDS : Respiratory distress syndrom

RF : Renal failure

SGA : Small for gestational age

STORCHEB- : S: Syphilis

AIDS : T: Toxoplasmosis

- : O: Others
- : R: Rubella
- : C: CytoMegalo inclusion virus
- : H: herpes simplex
- : EB: Epstein barr
- : AIDS: Acquired Immune Deficiency Syndrome

SVC

: Superior vena cava

TPN

: Total parenteral nutrition

TTN

: Transient tachypnea of the newborn

VLBW

: Very low birh weight

### LIST OF FIGURES

|                                                                         | Pages |
|-------------------------------------------------------------------------|-------|
| Figure (1): Neonatal mortality risk                                     | 26    |
| Figure (2): Grid for recording weights of premature infants             | 34    |
| Figure (3): Sites for central venous access in infants.                 | 109   |
| Figure (4): Slit-valve non-refluxing silicone catheter                  | 113   |
| Figure (5): Dressing technique for fixation of central venous catheter  | 117   |
| Figure (6): The operative field                                         | 119   |
| Figure (7): Venotomy with microvascular scissors.                       | 120   |
| Figure (8): Venotomy with the No. 11 scalpel                            | 121   |
| Figure (9): A catheter is inserted into the inferior vena cava          | 124   |
| Figure (10): Insertion of percutaneous central silastic catheter (PCSC) | 127   |
| Figure (11): The dressing                                               | 129   |
| Figure (12): Technique of applying occlusive central venous catheter    | 131   |
| dressing                                                                |       |
| Figure (13): Comparative figure between MB233G and Vamin 9 glucose      | 154   |
| Figure (14): Example of pediatric parenteral nutrition order            | 190   |

Introduction & Aim of the Kszay

## INTRODUCTION & AIM OF THE ESSAY

Because of the major advances in respiratory and other life support, nutrition and the absorptive function of the gut have largely replaced the lung as the major limiting factors in intact survival of the sick, premature, or low birth weight newborn. Mortality rates of 85% for infants weighing less than 1500 gm at birth were common 25 years ago, but are now at the order of 10% to 15%. Hence, these premature and sick infants are surviving to offer an unprecedented nutritional challenge in securing survival and normal growth.

The general objective of a nutritional regimen for the high risk newborn is to support life and a rate of growth sufficient to fulfill the individual's genetic potential.

This review aims to provide the background and practical experience of this subject, however, as there are still major uncertainties about the nutritional goals to optimize body composition and long-term growth and development. The indication of enteral and parenteral feeding, routes of administration solution used and complication of different types of nutrition of high risk newborn will be discussed.

# I. Nutritional Requirements of the Newborn

### I. NUTRITIONAL REQUIREMENTS OF THE NEWBORN

A knowledge of fetal growth and body composition during the third trimester is useful in understanding the nutritional needs of the newborn. Fetal growth in the third trimester is characterized by rapid weight gain (10 to 15 g/kg/day) with a quadrupling of fetal mass. This growth is fueled by a constant flux of transplacental glucose, amino acids, mineral, and vitamins.

Inadequate delivery of nutrients and oxygen results in intra-uterine growth retardation, and in some cases, fetal demise. In constant, excessive glucose delivery in diabetic pregnancies predispose the fetus to hyperinsulinemia and macrosomia.

### During the third trimester:

The fetal protein increases by 2 g/kg/day.

The fetal fat composition increases from 1 per cent fat at 28 weeks gestation to 15 per cent at term. Only a limited amount of carbohydrate is stored as hepatic glycogen.

The fetal calcium content at term is 28 g with 98 per cent in bone.

The fetal phosphorus at term is 16 g with 80 per cent in bone.

The fetal magnesium at term 0.8 g with 60 per cent in bone.

The fetal iron averages 75 mg/kg. It increases proportionately with weight during the third trimester. Most of it is incorporated into hemoglobin.

Fetal hepatic copper stores increases to a level higher than any other time in life.

The fetal zinc accumulates to a level of 250 mcg/kg/day.

Water soluble vitamins are generally not stored in tissues and must be provided postnatally.

However, fetal hepatic folate content does increase toward term.

Fat soluble vitamins stores are limited. Hepatic retinol increases during the third trimester. However, both term and preterm infants frequently have a hepatic retinol concentration considered to be deficient in comparison with adult concentration (>20 mcg/gram), and vitamin E stores in the fetus increase in parallel with fetal fat content. Hence, prematurely delivered infants are at greater risk for vitamin E deficiency (*D'Harlingue and Byrne 1991*).

When the rapid growth of the third trimester is interrupted by premature delivery, the infant is particularly at risk for the development of both macro-nutrient and micro-nutrient deficiencies. Estimation for energy and nutrient requirements for preterm infant must take into consideration decreased absorption,

lower nutrient reserves, and the requirement imposed by a greater growth velocity.

Estimated nutrient needs of the normal newborn are summarized in the Recommended Dietary Allowances (RDAs), published by the Food and Nutrition Board of the Nutritional Academy of Sciences (*Table 1*), 1989.

### Postnatal growth and nutrition:

#### Water:

There are large shifts in water balance during the postnatal period, such that the fluid needs of sick term and premature infants must be closely monitored. The full-term infant normally loses about 10 per cent of body weight postnatally partially due to a contraction of the extra cellular fluid space. Preterm infants younger than 32 weeks gestation may experience a postnatal weight loss of up to 20 per cent of birth weight with the nadir occurring at bout 2 weeks of age (Shaffer et al., 1987).

Term infants fed adlibitum typically ingest milk at a rate of at least 150 ml/kg/day. During the first week; very low birth weight (VLBW) newborn may require fluid intakes of more than 200

Table (1): Recommended daily dietary allowances for infants.

|                                                   |               |                 |                    | F                 | Fat-soluble Vitar                     | le Vitami                                                                               | nins                   |                        |                       | Water-                  | Water-soluble V                   | Vitamins                            |                      |                                    |                      | 4                       | Minerals and Trace Elements | and Tra      | ce Elem      | ents           |                       |
|---------------------------------------------------|---------------|-----------------|--------------------|-------------------|---------------------------------------|-----------------------------------------------------------------------------------------|------------------------|------------------------|-----------------------|-------------------------|-----------------------------------|-------------------------------------|----------------------|------------------------------------|----------------------|-------------------------|-----------------------------|--------------|--------------|----------------|-----------------------|
| Infant<br>age Weight<br>(years) (kg)              | Veigh<br>(kg) | t<br>Kcals      | Protein<br>(gm)    |                   | Vita-<br>min D<br>" (μg) <sup>b</sup> | Vita- Vita- Vitamin<br>min A min D E (mg<br>µgRE)* (µg) <sup>b</sup> α-TE) <sup>c</sup> | Vita-<br>min K<br>(µg) | Vita-<br>min C<br>(mg) | Thia-<br>mine<br>(mg) | Ribo-<br>flavin<br>(mg) | Niacin<br>(mg<br>NE) <sup>d</sup> | Vita-<br>min B <sub>6</sub><br>(mg) | Fola-<br>cin<br>(µg) | Vitamin<br>B <sub>12</sub><br>(µg) | Cal-<br>cium<br>(mg) | Phos-<br>phorus<br>(mg) | Mag-<br>nesium<br>(mg)      | Iron<br>(mg) | Zinc<br>(mg) | lodine<br>(μg) | Sele-<br>nium<br>(µg) |
| 0.0-0.5 6 kgx108 kgx2.2<br>0.5-1.0 9 kgx98 kgx1.6 | 96            | kgx108<br>kgx98 | 8 kgx2.2<br>kgx1.6 | 375 7.5<br>375 10 | 7.5                                   | 6 4                                                                                     | 5<br>10                | 30<br>35               | 0.3                   | 0.4                     | 5                                 | 0.3                                 | 25<br>35             | 0.3                                | 400<br>600           | 300                     | 40                          | 10           | νν           | 40<br>50       | 10<br>15              |

Estimated Safe and Adequate Daily Intakes of Selected Vitamins and Minerals<sup>e</sup>

| ı              | 4                           | ı                  |
|----------------|-----------------------------|--------------------|
|                | Molybdenum<br>(µg)          | 15-30<br>20-40     |
| ıtst           | Chromium (µg)               | 10-40<br>20-60     |
| Trace Elements | Fluoride<br>(mg)            | 0.1-0.5<br>0.2-1.0 |
| į              | Manganese<br>(mg)           | 0.3-0.6<br>0.6-1.0 |
|                | Copper<br>(mg)              | 0.4-0.6            |
|                | Pantothenic<br>acid<br>(mg) | 3                  |
| Vitamins       | Biotin<br>(μg)              | 10<br>15           |
| ·              | Infant<br>age<br>(years)    | 0.0-0.5            |

Retinol equivalents: 1 retinol equivalent = 1  $\mu g$  retinol or 6  $\mu g$  retinol or 6  $\mu g$   $\beta$ -carotene.

<sup>b</sup>As cholecalciferol: 10 µg cholecalciferol = 400 IU of vitamin D

 $\alpha$ -Tocopherol equivalents: 1 mg of D- $\alpha$ -tocopherol = 1  $\alpha$ -TE

Niacin equivalent: 1 NE is equal to 1 mg of niacin or 60 mg of dietary tryptophan.

\*Because there is less information on which to base allowances, these figures are not given in the main table of RDA and are provided here in the form of ranges of recommended intakes. Since the toxic levels for many trace elements may be only several times usual intakes, the upper levels for the trace elements given in this table should not be habitually exceeded.

Source: Food and Nutrition Board, National Academy of Sciences - National Research Council, 1989,