AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

FINITE ELEMENT ANALYSIS OF MAT FOUNDATIONS RESTING ON NONLINEAR ELASTIC MEDIUM

BY

Eng. MAHMOUD ABDEL HAMED HASSANEN
High DIPLOMA, Construction Project Management
Faculty of Eng. - Ain Shams University, 1990
B.Sc. Civil Engineering
Ain Shams University, 1987

A Thesis
Submitted in Partial Fulfillment of the
Requirements for the Degree of
Master of Science

in Structural Engineering

Supervisors

Prof. Dr. Hassan M. Hosny Professor of R. C. Structures Structural Engineering Dept. Faculty of Eng. & Technology Slmatrya - Helwan University Prof. Dr. Mostafa Zidan Professor of Structural Eng. Structural Engineering Dept. Faculty of Engineering Ain Shams University

Assistant Prof. Dr. Abdel Salam A. Mokhtar Structural Engineering Department Faculty of Engineering Ain Shams University

Cairo, 1993

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

FINITE ELEMENT ANALYSIS OF MAT FOUNDATIONS RESTING ON NONLINEAR ELASTIC MEDIUM

BY

Eng. MAHMOUD ABDEL HAMED HASSANEN B.Sc. Civil Engineering Ain Shams University, 1987

A Thesis
Submitted in Partial Fulfillment of the
Requirements for the Degree of
Master of Science
in
Structural Engineering

Supervisors

Prof. Dr. Hassan M. Hosny Frofessor of R. C. Structures Structural Engineering Dept. Faculty of Eng. & Technology Simatrya - Helwan University Prof. Dr. Mostafa Zidan
Professor of Structural Eng.
Structural Engineering Dept.
Faculty of Engineering
Ain Shams University.

Assistant Prof. Dr. Abdel Salam A. Mokhtar
Structural Engineering Department
Faculty of Engineering
Ain Shams University

Cairo, 1993

EXAMINERS COMMITTEE

Name , Title & affiliation

Signature

- 1. Prof. Dr. Amr M. Radwan prof. of Geotechnical Eng. Faculty of Engineering & Technology Elmatrya - Helwan University.
- 2. Prof. Dr. F. M. El-Nahhas prof. of Geotechnical Eng. Faculty of Engineering Ain Shams University.
- 3. Prof. Dr. Hassan M. Hosny

 prof. of Reinforced concrete

 Faculty of Engineering & Technology

 Elmatrya Helwan University.
- 4. Prof. Dr. Mostafa Zidan
 prof. of Structural Eng.
 Faculty of Engineering
 Ain Shams University.

Date : 3\ / 10 / 1993

FARRO EINOS

STATEMENT

This dissertation is submitted to AIN SHAMS University for the degree of Master of Science in Structural Engineering.

The work included in this thesis was carried out by the author in the Department of Structural Engineering, Ain Shams University, from October 1990 to October 1993.

No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Date : October, 1993

signature: Mappinged A. H. Hassoven

Name : Mahmoud Abdel Hamed Hassanen

Ain Shams University Faculty of Engineering

Dept. of Structural Engineering
Abstract of the M.Sc. thesis submitted by
Eng. Mahmoud Abdel Hamed Hassanen

Title of thesis Finite Element Analysis of Mat Foundations Resting on Nonlinear Elastic Medium.

Supervisors: 1. Prof. Dr. Hassan M. Hosny

2. Prof. Dr. Mostafa Zidan

3. Dr. Abdel Salam A. Mokhtar

Registration Date: 10/12/1990 Examination Date: 31/10/1993

Abstract :

This thesis studies the effect of nonlinear behavior of soil medium supporting mat foundations on the contact pressure distributions, internal force distributions and deformations in the mat foundations subjected to gravity loads.

soil medium has been represented by individual springs with constant modulus of elasticity at certain points of the mat or by infinite number (bed) of springs with variable modulus of elasticity. In each case, a soil mathematical model has been considered.

The theoretical assumptions utilized to deduce the stiffness matrix of rectangular plate in bending resting on bed of springs with variable modulus of elasticity has been presented and the stiffness matrix has been deduced. Also, a computer program is developed and checked to analyze mat foundations by the proposed method of analysis.

Different types of mat foundations such as mat with and without openings and mat with inverted beams has been analyzed using both the proposed method and the conventional method. A comparison study between both methods of analysis for contact pressure distributions, internal forces and deformations has been performed.

Keywords:

finite element method, plate in bending, nonlinear soil behavior, subgrade reaction model, nonlinear analysis, elastic model, mat foundations, raft foundations.

ACKNOWLEDGEMENT

The author wishes to express his gratitude and appreciation to Prof. Dr. Hassan M. Hosny, professor of Reinforced Concrete Structures, Faculty of Engineering and Technology, Helwan University, Prof. Dr. Mostafa Zidan, professor of Structural Engineering and Assist. Prof. Dr. Abdel Salam Mokhtar, Structural Engineering Department, Faculty of engineering, Ain Shams University, for their sincere guidance, valuable advice and stimulating supervision during the course of development of this thesis.

The author also extends his appreciation to Eng. Ashraf H. Allouba, president of Engineering Consultants' Group, ECG, for his remarkable encouragement to research in various fields, and for the use of the computer facilities at the firm premises. The author further wishes to thank Eng. Ahmed Hashem for his fruitful co-operation.

The author wishes to extend gratitude to his parents and his sister, for their understanding, encouragement and support.

TABLE OF CONTENTS

			Page
EXAMINERS	COMMITTEE		I
STATEMENT			ΙΙ
ABSTRACT			III
ACKNOWLED	GEMENT		IV
TABLE OF	CONTENTS		٧
LIST OF T	ABLES		IX
LIST OF F	IGURES		Х
CHAPTER (1) INTRODU	JCTION	
1.1	General		1
1.2	Types and	structural systems of mat foundations	2
	1.2.1	Flat plate	2
	1.2.2	Flat plate thickened under columns	2
	1.2.3	Flat plate with pedestals	3
	1.2.4	Two way beam and slab	. 3
	1.2.5	Cellular construction	. 3
	1.2.6	Mats with basement walls	3
1.3	Advantage	es of mat foundations	3
1.4	General a	assumptions of analysis	4
1.5	Objective	es	6
1.6	Scope of	work	6
CHAPTER (2) LITERAT	TURE REVIEW OF MAT FOUNDATION ANALYSIS	
2.1	General		11

2.2	Soil idea	alization	11
	2.2.1	Winkler model idealization	12
	2.2.2	Elastic continuum model	15
	2,2,3	Two-parameter elastic model	17
	2.2	.3.1 Filonenko-Borodich model	18
	2.2	.3.2 Hetenyi model	18
	2.2	.3.3 Pasternak model	19
	2.2	.3.4 Vlazov model	20
	2.2	.3.5 Reissner model	20
2.3	Soil prop	perties and parameters	21
	2.3.1	Elastic soil properties	21
	2.3.2	Nonlinear pressure-settlement	
		relationship	26
	2.3.3	Ultimate bearing capacity	27
2.4	Foundatio	on idealization	28
	2.4.1	Strip model	28
	2.4.2	Grid model	29
	2.4.3	Equivalent grid framework modal	29
	2.4.4	Thin plate model	29
2.5	Methods o	of analysis	30
	2.5.1	RIGID method	3 3
	2.5.2	FLEXIBLE methods	35
	2.5.	.2.1 Simplified FLEXIBLE methods	36
	2.5	.2.2 Accurate FLEXIBLE methods of	
		analysis	37
		2.5.2.2.a Analytical methods	38
		2.5.2.2 h Numerical methods	30

CHAPTER (3) PROPOSE	D METHOD OF ANALYSIS	
3.1	General		58
3.2	Assumptio	ns for analysis	58
3,3	Nonlinear	mathematical model for soil	59
3.4	The propo	sed method of analysis	60
3.5	Finite el	ement technique	61
	3.5.1	Introduction	61
	3.5.2	Stiffness matrix of rectangular plate	
		in bending	64
	3.5.3	Stiffness matrix for soil with	
		variable subgrade reaction	7 1
	3.5.4	The nodal loads	75
	3.5.5	The nodal straining actions	77
3.6	The solut	ion procedure	79
CHAPTER (4) COMPUTE	R PROGRAMME AND APPLICATIONS	
4.1	General		87
4.2	Solution	algorithm and computer programme	87
4.3	Programme	verification	94
4.4	Selective	applications	94
	4.4.1	General	94
	4.4.2	Soil mathematical models	95
	4.4.3	Structural models	96
	4.4.4	Results analysis	97
	4.4.	4.1 Mat foundation models	97
	4.4.	4.2 Isolated footing models	101

CHAPTER (5) SUMMARY AND CONCLUSIONS	
5.1	Summary	164
5.2	Conclusions	165
5.3	Recommendation for further studies	166
REFERENCE	S	167

LIST OF TABLES

Table	Title	Page
(2.1)	Typical range of values for the static stress-	
	strain modulus $\mathbf{E_s}$ for selected soil	46
(2.2)	Typical range of values for Poisson's ratio ν_{\S}	47
(2.3)	Range of values of modulus of subgrade reaction	Í
	k	48

LIST OF FIGURES

Figure	Title	Page
(1.1)	Common types of mat foundations	9
(1.2)	Depth and width of foundation for spread	
	footings and mat foundations	10
(2.1)	Surface displacements of the Winkler model	49
(2.2)	Typical surface displacement profiles of an	
	elastic half-plane	50
(2.3)	Typical surface displacement profiles of an	
	elastic half space	50
(2.4)	Surface displacements of the Filonenko-Borodich	
	model	51
(2.5)	The Pasternak model	52
(2.6)	Elastic properties of soil	53
(2.7)	Modulus of subgrade reaction	53
(2.8)	Coefficient of subgrade reaction k_{\S} for cohesion	
	and cohesionless soils	54
(2.9)	Nonlinear soil behaviour idealization	55
(2.10)	Plate element and equivalent framework model	55
(2.11)	Stress distributions under rigid foundations	56
(2.12)	Design of rigid mat as strips	56
(2.13)	Soil representation as springs at nodes	57
(3.1)	Mat modeling discretizing, geometry and applied	
	load directions	83
(3.2)	Positive directions for local axes and degrees	

,	of freedom	83
(3.3)	Elements and nodes numbering system	84
(3.4)	Stresses and strains in plate in bending	84
(3.5)	The proposed subgrade reaction distribution	
	under rectangular plate element	85
(3.6)	Geometry, location and equivalent nodal forces	
	for partially loaded element	85
(3.7)	Nonlinear solution procedure	86
(4.1.a)	Subprogramme MAT flow chart	103
(4.1.b)	Subprogramme MAINPROGRAME flow chart	104
(4.1.c)	Subprogramme GLOBSTFMTRX flow chart	105
(4.1.d)	Subprogramme CHECKTENSION flow chart	106
(4.1.e)	Subprogramme CHECKACCURAC flow chart	107
(4.2.a)	Subgrade mathematical model (weak soil)	108
(4.2.b)	Subgrade mathematical model (strong soil)	108
(4.3.a)	Flexible and rigid mat models (Models MPX & MPG)	109
(4.3.b)	Flexible and rigid mat with openings models	
	(Models MOX & MOG)	110
(4.3.c)	Mat with inverted beams model (Model MB)	111
(4.4.a)	Model FC	112
(4.4.6)	Model FU	113
(4.5.a)	Settlement distribution (linear analysis), model	
	MPX	114
(4.5.b)	Settlement distribution (nonlinear analysis),	
	model MPX	115
(4.6.a)	Settlement distribution (linear analysis), model	
	MPG	116
(4.6.b)	Settlement distribution (nonlinear analysis).	

	model MPG	117
(4.7.a)	Settlement distribution (linear analysis), model	
	MB	118
(4.7.b)	Settlement distribution (nonlinear analysis),	
	model MB	119
(4.8.a)	Settlement distribution (linear analysis), model	
	MOX	120
(4.8.b)	Settlement distribution (nonlinear analysis),	
	model MOX	121
(4.9.a)	Settlement distribution (linear analysis), model	
	MOG	122
(4.9.b)	Settlement distribution (nonlinear analysis),	
	model MOG	123
(4.10.a)	Contact pressure distribution (linear analysis),	
	model MPX	124
(4.10.b)	Contact pressure distribution (nonlinear	
	analysis), model MPX	125
(4.11.a)	Contact pressure distribution (linear analysis),	
	model MPG	126
(4.11.b)	Contact pressure distribution (nonlinear	
	analysis), model MPG	127
(4.12.a)	Contact pressure distribution (linear analysis),	
	model MB	128
(4.12.6)	Contact pressure distribution (nonlinear	
	analysis), model MB	129
(4.13.a)	Contact pressure distribution (linear analysis),	
	model MOX	130
(4.13.b)	Contact pressure distribution (nonlinear	