Periostin as a systemic biomarker of eosinophilic airway inflammation in asthmatic children

Thesis

Submitted for Partial Fulfillment of M.Sc.Degree in Pediatrics

By RadwaEzzat Amin Mohamed M.B.,B.ch.

Cairo University

Supervised By

Prof. Dr. HalaHamdyShaaban

Professor of pediatrics

Cairo University

Dr.Hanan Mohsen Osman

Lecturer of pediatrics

Cairo University

Dr. Salma Mohamed Said

Lecturer of clinical pathology

Cairo University

Faculty of Medicine

Cairo University

2016

Acknowledgment

Thanks to ALLAH, most Gracious, most merciful, for allowing me to begin, to go through, and to complete this work.

I would like to express my deepest appreciation and gratitude to **Prof. Dr.,Hala Hamdy Shaaban, Professor of Pediatrics, Faculty of Medicine, Cairo University,** for her valuable guidance, generous support and encouragement during the study she taught me scientifically as well as ethically how to be a better doctor.

My profound thanks to **Dr.,Hanan Mohsen Osman, lecturerof Pediatrics, Faculty of Medicine, Cairo University** for her valuable opinions, suggestions and great help.

Many thanks to **Dr.**, **Salma Mohamed Said**, **lecturerof clinical pathology**, **Faculty of Medicine**, **Cairo University**, for her sincere advice and assistance .

Table of Contents

Item	Page
List of Abbreviations	III
List of Tables	VI
List of Figures	VII
Abstract	IX
Introduction and Aim of work	1
Review of literature	
Chapter 1: Bronchial Asthma	4
Chapter 2: Biomarkers in Asthma	66
Chapter 3: Periostin	73
Subjects and Methods	85
Results	91
Discussion	105
Conclusion and Recommendations	110
References	112
Summary	134
Arabic Summary	136

List of Abbreviations

ADAM33	A disintegrin and metalloprotease 33 gene
AEC	Absolute eosinophilic count
AHR	Airway hyperreactivity
APC	Antigen-presenting cells
ARIA	Allergic rhinitis and its impact on asthma initiative
AS	Ankylosing spondylitis
BA	Bronchial asthma
BAL	Bronchoalveolar lavage
BD	Positive bronchodilator
BMI	Body mass index
CD	Clusters of differentiation
COPD	Chronic obstructive airway disease
COX-1	Cyclo-oxygenase 1 enzyme
DPI	Dry powder inhaler
EBC	Exhaled breath condensate
ECM	Extracellular matrix
ECRS	Eosinophilic chronic rhinosinusitis
ED	Emergency department
EIA	Exercise induced asthma
EIB	Exercise-induced bronchospasm
ELISA	Enzyme linked immune-sorbent assay
FCE RI	High-affinity fragment crystalline receptors for ige
FDA	Food and drug administration
FEF	Forced expiratory flow
FENO	Fractional exhaled no
FEV1	Forced expiratory volume in 1 second
FRC	Functional residual capacity
FVC	Forced vital capacity
GERD	Gastroesophageal reflux disease
GINA	Global initiative for asthma
GM-CSF	Granulocyte-macrophage colony-stimulating factor
HDM	House dust mite
HFA	Hydro fluoroalkane
НО-1	Hemeoxygenase-1

HPA	Hypothalamic-pituitary-adrenal axis
HRP	Horseradish peroxidase
ICS	Inhaled corticosteroids
ICU	Intensive care unit
IFN	Interferon
IG	Immunoglobulin
IGE	Immunoglobulin E
IIPS	Idiopathic interstitial pneumonias
IL	Interleukin
IPF	Idiopathic pulmonary fibrosis
KDA	Kilo dalton
LABA	Long acting B agonist
LTRA	Leukotriene receptor antagonist
LTS	Leukotrienes
MCP	Monocyte chemotactic protein
MCS	Mast cell stabilizers
MDCS	Macrophage-derived chemokines
MIP-1A	Macrophage inflammatory protein -1 alpha
NAEPP	The national asthma education and prevention program
NK	Natural killer
NO	Nitric oxide
NSAID	Nonsteroidal anti-inflammatory drugs
OCS	Oral corticosteroids
OD	Optical density
OVA	Ovalbumin
PAF	Platelet-activating factor
PCR	Polymerase chain reaction
PEF	Peak expiratory flow
PGD2	Prostaglandin d2
PGF2A	Prostaglandin f2 alpha
PN	Periostin
PV	Positive predictive value
RAST	Radio allergosorbent tests
ROC	Receiver-operating characteristic
ROS	Reactive oxygen species
RSV	Respiratory syncytial virus

RV	Residual volume
SABA	Short-acting β2-agonist
SPSS	Statistical package for social science
TAP1	Translational asthma phenotype 1
TARCS	Thymus and activation-regulated chemokines
TGF	Transforming growth factor
TGF-β	Transforming growth factor –β
TH1	T-helper cell1
TH2	T-helper cell2
TLC	Total lung capacity
TLR	Toll-like receptor
TNF- α	Tumor necrosis factor
TMB	Trimethylbenzidine
URTIS	Upper respiratory tract infections
VC	Vital capacity
α	Alpha
β	Beta
γ	Gamma
μg	Micro-gram
μl	Micro liter

List of Tables

Table	Page	
Table (1): Diagnostic criteria for asthma in children 6–11 years	40	
Table (2): Differential diagnosis of asthma in children 6–11 years	41	
Table (3): Features suggesting a diagnosis of asthma in children 5	42	
years and younger	42	
Table (4): Common differential diagnoses of asthma in children 5	43	
years and younger	73	
Table(5): Levels of asthma control	48	
Table (6): Asthma medications by category	55	
Table (7): Choice of inhaler device for children5 years and	57	
younger	37	
Table (8): Initial assessment of acute asthma exacerbations in	60	
children 5 years and younger	OU	
Table (9): Advantages and disadvantages of currently used	71	
asthma biomarkers	/1	
Table(10): basic demographic data of asthmatic patients	91	
Table (11): basic clinical data of asthmatic patients	93	
Table (12): Comparison of cases with bronchial asthma and	96	
controls	90	
Table (13): Relation between periostin and family history of atopy	99	
Table (14): Relation between periostin and different allergic	99	
manifestations	77	
Table (15): Correlation between serum periostin level and other	100	
relevant quantitative variables	100	
Table (16): Relation between the severity of asthma and various	102	
quantitative variables	102	
Table (17): Relation between the severity of asthma and periostin	102	
level in patients receiving inhaled corticosteroids	102	

List of Figures

Figure	Page
Figure (1): Pathological Features of Asthma	
Figure (2): Cross-section of a small asthmatic airway	
Figure(3): factors limiting airflow in acute and persistent asthma	21
Figure (4): Integrative model of the components of airway	30
remodeling	30
Figure (5): Differential cell typing in induced sputum, association	36
with clinical features, and cell-type specific therapeutic approaches	30
Figure (6): Clustering of asthmatic patients based on differential	
gene expression profiling from bronchial brushings and induced	37
sputum samples reveals at least three distinct (clinical) phenotypes	
Figure (7): The control-based asthma management cycle	52
Figure (8): Stepwise approach to control symptoms and minimize	53
future risk in children 5 years or older	33
Figure (9): Stepwise approach to control symptoms and minimize	54
future risk in children less than 5 years old	34
Figure (10): Primary care management of acute asthma or	61
wheezing in children 5 years and younger	01
Figure (11): Management of asthma exacerbations in primary care	62
in children 6–11 years	02
Figure (12): Management of asthma exacerbations in acute care	63
facility, e.g. emergency department	03
Figure (13): Periostin is involved in the pathogenic process of	77
eosinophils and Th2-type asthma.	11
Figure (14): The role of periostin in the pathogenic process of	70
subepithelial fibrosis.	78
Figure (15): Involvement of periostin in thickness of basement	01
membrane in bronchial asthma	81
Figure (16): sex distribution among asthmatics	92
Figure (17): Residence distribution among asthmatics	92
Figure (18): Prevalence of allergic symptoms among cases with	0.4
bronchial asthma.	94
Figure (19): Prevalence of various offending / precipitating agents	
among cases with bronchial asthma.	94

Figure (20): Prevalence of various offending / precipitating agents among patients with mild, moderate, or severe bronchial asthma.	95
Figure (21): Usage of asthma medications	95
Figure (22): classification of medications used in cases according to asthma severity	96
Figure (23): Box plot showing the absolute eosinophil count in cases with bronchial asthma and controls.	97
Figure (24): Box plot showing the serum periostin level in cases with bronchial asthma and controls.	97
Figure (25): Receiver-operating characteristic (ROC) curve for the discrimination between cases with bronchial asthma and controls using the serum periostin level.	98
Figure (26): Relation between periostin and different allergic manifestations	100
Figure (27): Scatter plot showing the correlation between serum periostin level and absolute eosinophil count.	101
Figure (28): Scatter plot showing the correlation between serum periostin level and severity of asthma. On the severity scale, 1 refers to mild asthma, 2 to moderate asthma, and 3 to severe asthma.	101
Figure (29): Box plot showing the absolute eosinophil count in patients with mild, moderate, or severe bronchial asthma.	103
Figure (30): Box plot showing the serum periostin level in patients with mild, moderate, or severe bronchial asthma.	103
Figure (31): Receiver-operating characteristic (ROC) curve for the discrimination between patients with severe or mild-to-moderate bronchial asthma using the serum periostin level.	104

Abstract

Background and Aim:

Th2_eosinophilic inflammation has been considered to be the dominant inflammatory pattern in asthma. Eosinophilic disease is a strong predictor of corticosteroid responsiveness. Direct airway sampling is technically challenging and impractical. Serum periostin may be a biomarker of eosinophilic asthma and it may help in asthma stratification prior to therapeutic interventions. The aim of this study is to explore serum Periostin as potential systemic biomarker in eosinophilic asthma in children and to correlate it with type of asthma.

Subjects and methods:

This is a cross sectional study, 60 asthmatic children with varying degree of severity, aged from 1-12 years were recruited from allergy and pulmonology clinic at Abo El Rish children's hospital, Cairo University and studied in comparison to 20 healthy age and sex matched children. Serum periostin level and complete blood picture including absolute eosinophilic count are measured in both asthmatics and controls.

Results:

Serum periostin levelis higher in asthmatic children compared to controls with with p-value <0.001, Serumperiostinlevel was significantly higher in severe asthmatics inspite maximum ICS compared to mild-moderate asthmatics with p-value<0.0001. There is positive correlation between serum periostin level and degree of severity of asthma with p-value<0.0001. Serum periostin level has highest value in allergic rhinitis compared to allergic conjunctivitis and eczema, no significant correlation was found between periostin level and patients with positive family history of atopy p-value=0.187.

Conclusion:

These findings imply that serum periostin level may be involved in the pathogenesis of eosinophilic asthma. Serum level of periostin as a biomarker has the potential to be used as noninvasive inflammatory markers for evaluation of airway inflammation in asthma.

<u>**Key words:**</u> Bronchial asthma- asthmatic children- biomarkers-periostin-ICS.

Introduction and Aim of work

There are few biomarkers that can be easily accessed in clinical settings and may reflect refractory Th2_eosinophlic inflammation and remodeling of the asthmatic airways (*Szefler et al., 2013*).

Serum periostin may be one such biomarker to aid our understanding of the pathobiophysiology of asthma and stratification prior to therapeutic interventions. Periostin is a disulfide linked 90-kDa heparin-binding N terminus-glycosylated protein, containing four tandem fasciclin (Fas1) domains. Periostin has been confirmed in many tissues and pathologies and its expression is known to be prominent in fibrotic conditions, including sub-epithelial fibrosis in bronchial asthma (*Takayama et al.*, 2006).

Matricellular protein is a recent concept that was coined for an extracellular matrix protein that causes a vicious cycle of inflammation and remodeling. Periostin is one of these matricellular proteins and is upregulated by IL-4 and IL-13 stimulation from airway epithelial cells and other structural cells (*Sidhu et al.*, 2010). Serum periostin has been identified as the single best predictor of airway eosinophilia in patients with severe asthma who remain symptomatic despite maximal inhaled corticosteroid treatment (*Jia et al.*, 2012).

Therefore biomarkers that identify asthmatic patients likely to have Th2-driven inflammation in their airways might aid in the identification and selection of the patients most likely to respond to targeted therapies of asthma (*Jia et al.*, 2012).

Aim of the work

The aim of this study is to explore serum Periostin as potential systemic biomarker in asthmatic children and to correlate it with type of asthma according to Global Initiative for Asthma guidelines (GINA) classification.

Introduction

Asthma is a chronic inflammatory disease of the airways characterized by variable and recurring symptoms, reversible airflow obstruction and bronchospasm. Bronchial asthma has increasing incidence and prevalence worldwide. It is currently the most prevalent chronic disease in pediatric patients. During several years, studies have been performed to ascertain airway inflammation and consequently develop phenotype-specific and personalized therapies for asthma patients (*Wenzel*, 2012).

Airway inflammation and remodeling are fundamental features of asthma. Th2_eosinophilic inflammation has been considered to be the dominant inflammatory pattern in asthma (*Woodruff et al.*, 2009). Although asthma is traditionally thought to result from aeroallergen-induced inflammation driven by Th2 processes and is commonly characterized by eosinophilic infiltration of the airways, there is increasing evidence that there are other subtypes of asthma driven by alternative pathogenic mechanisms (*Galliet al.*, 2008). An emerging concept holds that the nature and intensity of granulocytic infiltration of the airways, in particular the presence or absence of increased numbers of eosinophils, defines pathophysiologically and clinically distinct subsets of the disease (*Wardlawet al.*, 2005).

Eosinophilic disease is a strong predictor of corticosteroid responsiveness in asthmatic patients (*Cowan et al.*, 2010). Direct airway sampling through sputum induction or bronchoscopy is technically challenging and often impractical in clinical practice, and hence noninvasive systemic biomarkers of airway eosinophilia are desirable for the rational management of asthma with existing and emerging targeted molecular therapies (*Green et al.*, 2002).

Review of literature

Chapter 1 Bronchial Asthma