
Ain Shams University Faculty of Engineering

BEHAVIOR OF CONCRETE BEAMS UNDER THERMAL LOAD

Вy ADHAM MOHAMMED SALAH EL DEIN HASSANEIN

A Thesis Submitted in partial fulfillment for the requirements of the Degree of the M.SC. in Civil Engineering.

Supervised by

Prof.Dr.\Ahmed A. Korashy.

Prof.Dr.\Abdel Wahab Abul Enain.

Dr.\Abdel El Salam Mokhtar.

Examiners Committee

Name, Title & Affiliation

Signature

1- Prof. Dr. / Sabry Samaan

Professor of Theory of Structures
Faculty of Engineering
Cairo University.

sala Samaun

2- Prof. Dr. / Abdel Raouf Watson

Professor of Theory of Structures
Faculty of Engineering
Ain Shams University

A.W. Beshin

3- Prof. Dr. / Ahmed A. Korashy

Professor of Theory of Structures
Faculty of Engineering
Ain Shams University

Ahmed Korashy

4- Prof. Dr. / Abdel Wahab Abul Enain

Professor of Concrete Structures
Faculty of Engineering
Ain Shams University

Date : OCTOBER, 1993

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of M.Sc. in Civil Engineering. The work included in this Thesis was carried out by the author in the Department of Civil Engineering, Ain Shams University, from October 1986 to October 1993. No part of this Thesis has been submitted for a degree or a qualification at any other University or Institution.

Date

Name

: October, 1993

Signature

: Adham M. Salaty

: ADHAM MOHAMMED SALAH EL DIEN

HASSANEIN

Ain Shams University Faculty of Engineering

Dept. of : Civil Engineering (Structural Engineering)

Abstract of the M.Sc. Thesis submitted by:

Eng. / Adham Mohammed Salah El Dein Hassanein.

Title of Thesis " BEHAVIOR OF CONCRETE BEAMS UNDER THERMAL LOAD "

Supervisors: (1) Prof. Dr. / Ahmed A. Korashy.

- (2) Prof. Dr. / Abdel Wahab Abul Enain.
- (3) Dr. / Abdel Salam A. Mokhtar.

Registration Date:13/10/1986 Examination Date:30/10/1993

Abstract: Concrete structures are subjected to continuous heating and cooling from the environment and the weather conditions. This causes additional deformations and stresses which must be considered in the design to avoid excessive cracking. In some cases, the temperature variations within the structure may cause stresses which are comparable in magnitude to stresses induced by live and dead loads.

The temperature distribution throughout a structure has to be known to calculate the resulting stresses, reactions and deformations. There are various parameters that affect the temperature development and consequently the stresses induced in reinforced concrete structures such as varying orientation of the structure, air temperature extremes, wind speed, surface conditions and shape and dimensions of the cross section. Therefore, every code suggests a certain temperature distribution to be used in the analysis. Moreover, researchers

=

suggest certain temperature distributions based on extensive experimental and theoretical analyses.

In addition to the temperature distribution, the accuracy of predicting stresses in the structure during the analysis depends on the extent of considering many factors such as : concrete in tension, tension - stiffening effects after cracking, mechanical load interactions, nonlinear thermal gradients or nonuniformity of cracked members. Any one of the above mentioned factors may be compromised to get accurate predictions in some cases.

In this Thesis, an overview of the methods of predicting the effect of thermal loads on reinforced concrete structures is briefly discussed. One of these methods is applied with modifications, to analyze a bridge example under mechanical loads with various shapes of temperature gradients. These are: (1) Egyptian code.; (2) Nonlinear temperature gradient.; (3) BS 5400 - Part 2 - 1978.; (4) Temperature distribution suggested by researcher. The analysis is performed using the following methods: (1) linear analysis; (2) nonlinear analysis without tension stiffening; (3) nonlinear analysis considering tension stiffening factors. Based on this analysis, the Egyptian Code is found to be safe and conservative and gives a temperature distribution which results in high thermal end actions as compared to BS 5400. On the other hand, the differences between the end-actions resulted from the non-linear temperature distribution and linear temperature distribution suggested in the Egyptian Code small. are Also, differences in the end-actions resulted from the temperature difference distribution suggested in BS 5400 temperature distribution based on the experimental work are relatively small.

Keywords: stiffness; reinforced concrete; tension; stressstrain relationship; thermal gradients; thermal stresses; structural analysis; temperature.

Acknowledgments

The Author would like to express his gratitude to Prof. Dr. / A. A. Korashy; Professor of Theory of Structure, Faculty of Engineering, Ain Shams University; Prof. Dr. / A. Abul Enain; Professor of Concrete Structures, Faculty of Engineering, Ain Shams University and Dr. / A. A. Mokhtar, Assistant Professor of Theory of Structure, Faculty of Engineering, Ain Shams University for their assistance and valuable advice in the preparation of this Thesis. Also, he would like to thank the National Authority for Tunnels Staff, in particular, Eng. / M. E. Abdel Salam, for their support.

CONTENTS

		PAGE
CHAPTER (1) : INTROD	UCTION	
1.1. GENERAL		1
1.2. OBJECTIVES	AND SCOPE OF THE THESIS	2
1.3. FIGURES	• • • • • • • • • • • • • • • • • • • •	4
CHAPTER (2) : REVIEW	OF THE METHODS OF ANALYSIS FOR	
CONCRE	TE STRUCTURES SUBJECTED TO	
MECHAN	ICAL AND/OR THERMAL LOADS	
2.1. INTRODUCTION	ON	5
2.2. METHODS OF	ANALYSIS	5
2.2.1. P	RIESTLEY METHOD (1978)	5
(A)	Assumptions	5
(B)	Statement Of The Method	5
(C)	Advantages Of The Method	10
(D)	Disadvantages Of The Method	10
2.2.2. ME	THOD REPORTED BY ACI	
COI	MMITTEE 349 (1980)	11
(A)	Assumptions	11
(B)	Statement Of The Method	13
(C)	Advantages Of The Method	13
(D)	Disadvantages Of The Method	14
2.2.3. M	ETHOD PROPOSED BY CLARK	
Al	ND CHURCH (1987)	15
(A)	Assumptions	15
(B)	Statement Of The Method	17
(C)	Advantages Of The Method	19
(D)	Disadvantages Of The Method	19
2.2.4. M	ETHOD PROPOSED BY HAMBLY (1987)	20
(A)	Assumptions	20
(B)	Statement Of The Method	21
(C)	Advantages Of The Method	25

(D) Disadvantages Of The Method	26
2.2.5. METHOD PROPOSED BY	
HUOVINEN (1989)	27
(A) Assumptions	27
(B) Statement Of The Method	27
(C) Advantages Of The Method	29
(D) Disadvantages Of The Method	29
2.3. OVERVIEW OF ALTERNATIVE	
METHODS OF ANALYSIS	30
2.4. SUMMARY	32
2.5. FIGURES	33
CHAPTER (3) : DETAILS OF THE ANALYTICAL PROCEDURE	
3.1. INTRODUCTION	45
3.2. THE ASSUMPTIONS	47
3.3. THE ANALYTICAL PROCEDURE	48
3.4. CONSTITUTIVE RELATIONS	
AND THE CONDITIONS	50
3.4.1. Concrete In Compression	50
3.4.2. Concrete In Tension	51
3.4.3. Reinforcing Steel	51
3.4.4. Thermal Load Effects	51
3.4.5. Effective Stiffness Factors	51
3.4.6. Thermal Fixed - End Actions	52
3.4.7. Section Analysis Conditions	53
3.5. ULTIMATE MOMENTS CAPACITY CHECK	54
3.6. TENSION STIFFENING FACTOR	55
3.6.1. Vecchio & Collins Method	56
3.6.2. Zhen & Zhang Method	57
3.7. MATERIALS PROPERTIES AT	
ELEVATED TEMPERATURES	59
3.8. THE ANALYSIS ALGORITHM	59
3.9. SECTION ANALYSIS ALGORITHM	60
3.10. EXPERIMENTAL VERIFICATION	62
3.11. THE ADVANTAGES OF THE PROCEDURE	65

3.12. CONCLUSIONS	66
3.13. FIGURES	67
CHAPTER (4) : THE COMPUTER PROGRAM DETAILS	
4.1. INTRODUCTION	75
4.2. THE PROGRAM DETAILS	75
4.2.1. Size Limits	75
4.2.2. Units And Sign Convention	76
4.2.3. Interactive Operation	76
4.2.4. Load Types	77
4.2.5. Crack And Yield History	78
4.2.6. Member Types	78
4.2.7. Ultimate Moment Capacity Check	79
4.2.8. Ranges Of Application	79
4.2.9. Influence Of Structure Breakdown	
On Accuracy	79
4.2.10. Influence Of iteration On Accuracy	80
4.3. THE MAIN PROGRAM DETAILS AND	
ITS SUBROUTINES	81
[] Main Program	81
[] Subroutine [Inv.]	83
[] Subroutine [MOCA]	83
[] Subroutine [Action, Stress, Displace]	84
[] Subroutine [Beamspec.]	84
[] Subroutine [Framespec.]	84
[] Subroutine [Gradient]	84
[] Subroutine [Loadspec.]	85
[] Subroutine [Stiff.]	85
[] Subroutine [Reduction]	85
4.4. FIGURES	86
CHAPTER (5) : CASES OF STUDY	
5.1. INTRODUCTION	88
5.2. DESCRIPTION OF THE STRUCTURE	89
5 3 TEMPEDATIDE CONNENT CHARPS	00

5.3.1. Egyptian Code	90
5.3.2. Nonlinear Transient Temperature Profile	91
5.3.3. British Code BS 5400, (1978)	92
5.3.4. Priestley Temperature Gradient	92
5.4. THE ANALYSIS CONDITION	92
5.4.1. Linear Elastic Analysis	93
5.4.2. Nonlinear Analysis Without Tension	
Stiffening	94
5.4.3. Nonlinear Analysis With Tension Stiffening	
(A) Vecchio's Method	94
(B) Zhen's Method	94
5.5. DISCUSSION OF RESULTS	94
5.5.1. Comparisons Betn. Eg. Code & Nonlinear	
Temp. Dis	95
5.5.2. Comparisons Betn. Eg. Code & Priestly Dis.	95
5.5.3. Comparisons Betn. Eg. Code & BS. Code	96
5.5.4. The Effect of Tension Stiffening Factor	98
5.5.5. The Effect Of Nonlinear Analysis	98
5.6. SUMMARY AND CONCLUSIONS	99
5.7. FIGURES	101
HAPTER (6) : CONCLUSIONS AND RECOMMENDATIONS	124
6.1. CONCLUSIONS	125
6.2. RECOMMENDATIONS	126
EFERENCES	127
PPENDICES	
[] APPENDIX (A) : LIST OF THE PROGRAM	
[] APPENDIX (B) : INPUT DATA SAMPLE	
[] APPENDIX (C) : OUTPUT DATA SAMPLE	
[] APPENDIX (D) : ALGORITHM OF MATRIX INVERSION	

LIST OF FIGURES AND TABLES

FIG	URES	PAGE
1.1	Heat gain and loss processes	4
1.2	Temperature gradients in box and T-girders observed	
	or suggested by previous investigators	4
2.1	New Zealand design thermal gradients	33
2.2	Factors affecting thermal response	33
2.3	Influence of thermal load on ultimate capacity	33
2.4	Vertical distribution of longitudinal thermal strain \dots	34
2.5	Continuity moments from thermal loads	35
2.6	Vertical thermal stress distribution (continuous bridge)	34
2.7	Theory and experimental comparisons for	
	a one-quarter scale box girder model	36
2.8	Fixed-end moments due to temperature	37
2.9	Calculation phases	38
2.10	Thermal strains	39
2.13	l Thermal strains and stresses	39
2.12	2 Active concrete zones	40
2.13	3 Temperature at top and bottom surfaces	
	of bridge deck during one day	41
2.14	4 Release of temperature moment in simply supported deck	42
	Release of temperature moments in a continuous deck	42
2.16	6 Temperature stresses in cracked reinforced	
	concrete subjected to hogging moment	42
2.1	7 Temperature stresses in cracked reinforced	
	concrete subjected to sagging moment	43
	B Possible combination of bending and temperature effects	3 44
2.19	9 Temperature stresses in a fix-edge slab where	
	cracking is only caused by temperature	44
	Types of thermal stresses	67
	Flow chart	68
	Concrete in compression	69
3 4	Concrete in tension prior to cracking	69

3.5 Concrete in tension post to cracking	69
3.6 Reinforcing steel	69
3.7 Strain conditions used in calculating effective	
stiffness and fixed-end factors	70
3.8 Variables in a layered section analysis	70
3.9 Schematic representation of test model PFI	71
3.10 Details of model's member cross section	71
3.11 Summary of "Shock Series" test results	
together with predicted response	72
3.12 Theoretical complete stress-deformation	
curves for concrete in tension	73
3.13 Relation between parameter ($lpha$) for descending	
branch and tensile strength of concrete	73
3.14 Material properties at elevated temperatures	74
4.1 Sign convention	86
4.2 Flow chart	87
5.1 Structure configuration and its cross section properties	101
5.2 Layered cross section analysis	102
5.3 Temperature distributions-Egyptian Code-Case 1	103
5.4 Temperature distributions-Egyptian Code-Case 2	104
5.5 Temperature distributions-nonlinear distribution-Case 3	105
5.6 Temperature distributions-nonlinear distribution-Case 4	106
5.7 Temperature distributions-Priestley EqCase 7	107
5.8 Temperature distributions-BS5400 -Case 5	108
5.9 Temperature distribution - BS5400 - Case 6	109
5.10 Temperature difference for BS5400 - Part 2 - 1978	110
5.11 Temperature distributions with various conditions	111
5.12 Moments at joint (6) [maxve]	112
5.13 Moments at joint (10) [max. +ve]	113
5.14 Reaction at Ext. support [joint (1)]	114
5.15 Reaction at Int. support [joint (6)]	115
5.16 Tension stress in RFT at section of member 5, end 2	116
5.17 Tension stress in RFT at section of member 10, end 1 .	117
5.18 Max. Compression in concrete at section of	
member 5, end 2	118

5.19 Max. Compression in concrete at section of	
member 10, end 1	119
TABLES	
5.1 Moments at member 5, end 2	120
5.2 Moments at member 10, end 1	120
5.3 Reaction at Ext. support [joint (1)]	121
5.4 Reaction at Int. support [joint (6)]	121
5.5 Tension stress in RFT at section of member 5, end 2	122
5.6 Tension stress in RFT at section of member 10, end 1	122
5.7 Max. Compression in concrete of section of	
member 5, end 2	123
5.8 Max. Compression in concrete of section of	
member 10 and 1	123