Ain Shams University Faculty of Engineering Structural Engineering Department

Ahmed Hosny Mohamed Abdel-Rahman

B. Sc. Civil Eng. - Hon. (1989) Ain Shams University

A Thesis

Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Civil Engineering

Supervised By

A.H

Prof. Dr. Fathalla Mohamed El-Nahhas
Prof. of Soil Mechanics and Foundation Engineering
Ain Shams University

Dr. Ali Abdel-Fattah Ali Assist. Prof. of Soil Mech. and Found. Ain Shams University Dr. Mohamed Adel El-Gammal Researcher in Eng. Research Inst. National Research Center

1 -

Cairo - 1993

بسم الله الرحمن الرحيم

EXAMINER COMMITTEE

Name, Title, Affiliation

Signature

- 1. Prof. Dr. Farouk I. El-Kadi
 Prof. of Geotech. Engineering
 Ain Shams University
- 2. Prof. Dr. Moustafa K. El-Ghamrawy
 Prof. of Geotech. Engineering
 El-Azhar University
- 3. Prof. Dr. Fathalla M. El-Nahhas
 Prof. of Geotech. Engineering
 Ain Shams University

Date: / /1993

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of M. Sc. in Civil Engineering.

This work included in the thesis was carried out by the author in the department of Structural Engineering, Ain Shams University, from April, 1992 to June 1993.

No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Date	:	-	1993		
Signature	e:		• • • • • • •		
Name	:Ahmed	Hosny	Mohamed	Abdel-Rahma	ır

ACKNOWLEDGMENTS

I wish to express my thanks and appreciation to Prof. Dr. Fathalla El-Nahhas for his supervision, guidance and both technical and moral support through this research. I also wish to express my deep gratitude to Dr. Ali Abdel-Fatah for his encouragement, invaluable advices and guidance during each stage of this research. Many thanks go to Dr. Adel El-Gammal for his continuous helpful discussions for every part of this thesis.

My utmost gratitude is for Dr. Mohamed Sheta for his encouragement, enormous help and sincere advices that gave me the strength to finish this work. Special thanks should go to Dr. Ashraf Abdel-hy for his friendship and helpfull technical support. Finally, I wish to dedicate this work to my family for giving me the suitable atmosphere during the time spent on this study.

Ain Shams University
Faculty of Engineering
Structural Engineering Department

Abstract for the M. Sc. thesis submitted by Eng. Ahmed Hosny Mohamed Abdel-Rahman

Title of the Thesis: Numerical Modelling of Concrete Diaphragm Walls

Supervisors : 1. Prof. Dr. Fathalla Mohamed El-Nahhas

2. Dr. Ali Abdel-Fattah Ali

3. Dr. Mohamed Adel Ghareb El-Gammal

Registration Date : 10/12/1990 Examination Date : 4/9/1993

ABSTRACT :

Implementation of subway systems became one of the effective solutions to overcome some of the environmental problems which face man's life sepecially in large highly populated cities.

Construction of subway stations and tunnels using the cut-and-cover technique employing reinforced concrete diaphragm walls is considered one of the most effective methods for controlling ground movements with minor effects on the adjacent existing structures. Analysis of such braced walls is considered one of the most sophisticated soil-structure interaction problems.

This research proposes a numerical modelling for analysis of diaphragm walls during the different construction stages of tunnels and subway stations. The associated variations in the soil stress field and deformations were investigated. In order to carry out such analysis, a computer program was specially upgraded using the Fortran language. Eight-node isoparametric finite elements were used to simulate the soil continuum and the diaphragm wall, the nonlinear stress-strain behaviour of the soil employing modified Duncan model (1984) were utilized. Spring type interface elements were also introduced to model the soil-diaphragm wall contact surface.

This thesis presents a comparative study between results of the nonlinear finite element analysis and the field measurements which had been compiled during construction of the Greater Cairo Underground Metro, Phase 1. Also, results of the analysis were compared with the predicted values from the commonly used empirical design rules of such walls.

An extensive parametric study was also carried out to evaluate the sensitivity of the utilized numerical model and the effect of different factors concerning the soil-wall interaction on the behaviour of the diaphragm wall and the associated soil deformations and stress field.

Key words: Diaphragm walls, tunnels, braced excavation, nonlinear analysis, Fortran, Finite element, eight node element, interface elements, unloading increments.

TABLE OF CONTENTS

СН	APTER PAGE
1.	INTRODUCTION
	1.1 GENERAL
	1.2 NATURE OF THE PROBLEM2
	1.3 OBJECTIVE OF THE RESEARCH3
2.	LITERATURE SURVEY
	2.1 INTRODUCTION4
	2.2 CONSTRUCTION OF BRACED EXCAVATION4
	2.3 DIFFERENT METHODS OF ANALYSIS6
	2.3.1 METHODS BASED ON THE EARTH PRESSURE
	THEORIES6
	2.3.1.1 THE WEDGE THEORY7
	2.3.1.2 RANKINE EARTH PRESSURE7
	2.3.1.3 SOIL PRESSURE ON BRACED SHEETING9
	2.3.2 SUBGRADE REACTION METHOD13
	2.3.3 FINITE ELEMENT ANALYSIS METHOD
	2.4 METHODS FOR THE PREDICTION OF THE GROUND LOSS
	AROUND THE EXCAVATION20
	2.4.1 MATHEMATICAL PRESENTATION FOR THE
	SETTLEMENT DISTRIBUTION20
	2.4.2 METHODS BASED ON THE DATA BASE RESULTS21
	2.5 MISCELLANEOUS ASPECTS AND DIFFERENT CASE
	HISTORIES23
	2.5.1 BASIC MOVEMENT TREND25
	2.5.1.1 MAXIMUM MOVEMENTS - STIFF CLAYS,
	RESIDUAL SOILS AND SANDS25

2.5.1.2	MAXIMUM MOVEMENTS - SOFT AND MEDIUM
	CLAYS31
2.5.1.3	GENERAL PATTERN OF GROUND
	MOVEMENTS33
2.5.1.4	SETTLEMENT PROFILES ADJACENT TO
	EXCAVATION35
2.5.1.5	EFFECT OF THE DIAPHRAGM WALL
	INSTALLATION METHOD ON THE SETTLEMENT
	ARROUND THE EXCAVATION35
2.5.2 ACTUAL	LATERAL STRESS DISTRIBUTION BEHIND
THE BRA	CED EXCAVATION38
2.5.2.1	DIFFICULTIES ASSOCIATED WITH THE USE
	OF PECK'S EARTH PRESSURE
	DISTRIBUTION, (1969)38
2.5.2.2	PROPOSED APPROACH FOR ESTIMATING THE
	ACTUAL EARTH PRESSURE
	DISTRIBUTION39
3. METHOD OF ANALYSIS	
3.1 INTRODUCTION.	41
3.2 GENERAL DESCR	IPTION OF THE ANALYSIS42
3.3 IDEALIZATION	OF THE PROBLEM45
3.3.1 THE EIG	HT-NODE ISOPARAMETRIC ELEMENT
STIFFNE	SS MATRIX46
3.3.1.1	THE EIGHT NODES ELEMENT
	CONFIGURATION46
3.3.1.2	EIGHT NODES ELEMENT STRAIN AND
	DISPLACEMENT49

			3.3.1.3	THE CONSTITUTIVE MATRIX52
			3.3.1.4	THE EIGHT NODES ELEMENT STIFFNESS
				MATRIX FORMULATION53
		3.3.2	CONSTITU	UTIVE MODEL55
			3.3.2.1	NONLINEAR SOIL MODEL55
			3.3.2.2	HISTORY AND DESCRIPTION OF THE
				HYPERBOLIC STRESS-STRAIN MODEL56
			3.3.2.3	NONLINEAR INCREMENTAL FINITE ELEMENT
				METHODOLOGY59
			3.3.2.4	THE ORIGINAL DUNCAN MODEL, 198060
			3.3.2.5	THE MODIFIED HYPERBOLIC MODEL,
				DUNCAN, 198463
			3.3.2.6	ANALYSIS PROCEDURES EMPLOYED IN THE
				PROGRAM68
		3.3.3	INTERFAC	CE FINITE ELEMENT71
			3.3.3.1	INTERFACE ELEMENT STIFFNESS
				MATRIX71
			3.3.3.2	INTERFACE ELEMENT MODEL
	3.4	NUMERI	CAL SIM	JLATION FOR BRACED EXCAVATION77
		3.4.1	SOIL EXC	CAVATION77
		3.4.2	INSTALLA	ATION OF TEMPORARY STRUTS79
		3.4.3	DELETION	N OF TEMPORARY STRUTS80
4.	PARA	METRIC	STUDY A	AND CASE HISTORY
	4.1	INTRO	OUCTION	81
	4.2	FINITE	ELEMENT	r ANALYSIS FOR A CASE HISTORY84
		4.2.1	CONSTRUC	CTION PROCEDURE FOR THE RUNNING
			TUNNEL	

	4.2.2	MATERIAL PROPERTIES AND PARAMETERS USED IN
		THE ANALYSIS87
	4.2.3	FINITE ELEMENT MESH CONFIGURATION90
	4.2.4	PRESENTATION OF THE FINITE ELEMENT
		RESULTS90
	4.2.5	FINITE ELEMENT RESULTS OF THE CASE
		HISTORY90
	4.2.6	COMPARISON BETWEEN THE FIELD MEASUREMENTS
		AND THE RESULTS OF THE FINITE ELEMENT
		ANALYSIS99
		4.2.6.1 HORIZONTAL DEFORMATION OF THE
		WALL100
		4.2.6.2 SETTLEMENT TROUGH ADJACENT TO THE
		WALL AND HEAVE INSIDE THE
		EXCAVATION100
	4.2.7	COMPARISON BETWEEN THE COMMON DESIGN RULES OF
		THE BRACED WALLS AND THE RESULTS OF THE
		FINITE ELEMENT ANALYSIS104
4.3	PARAMI	ETRIC STUDY108
	4.3.1	EFFECT OF THE CONSTITUTIVE MODEL OF SOIL108
	4.3.2	EFFECT OF NONLINEAR PARAMETERS114
		4.3.2.1 EFFECT OF MODULUS NUMBER (K)115
		4.3.2.2 EFFECT OF BULK MODULUS NUMBER
		(Kb)125
	4.3.3	EFFECT OF VARIATION OF THE WALL
		STIFFNESS134
	4.3.4	EFFECT OF THE PRESENCE OF THE BRACING
		SYSTEM140

	4.3.5 EFFECT OF VARIATION OF THE STRUT	
	STIFFNESS	146
	4.3.6 EFFECT OF VARYING THE NUMBER OF THE LOAD	
	INCREMENTS USED IN THE ANALYSIS	147
4.4	PRECONSTRUCTION PREDICTION OF THE BEHAVIOUR OF	
	UNDERGROUND STATIONS OF LINE 2 OF CAIRO METRO	153
	4.4.1 STATION DIMENSIONS AND THE SOIL MODEL	153
	4.4.2 CONSTRUCTION SEQUENCES FOR THE STATION	159
	4.4.3 RESULTS OF THE FINITE ELEMENT ANALYSIS	161
5.	UMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FURTHE	R
	TUDIES	
	.1 INTRODUCTION	165
	.2 SUMMARY	165
	.3 CONCLUSIONS	167
	.4 RECOMMENDATIONS FOR FURTHER STUDIES	172
	reforncec	171

LIST OF FIGURES

FIG.	. NO. P	AGE
2.1	Wedge equilibrium	8
2.2	Illustration of active and passive pressures for	
	cohesionless and cohesive soil. (After Bowels,	
	1982)	10
2.3	Development of earth pressure on braced excavations	12
2.4	Lateral earth pressure diagrams as suggested by Pec	k,
	1969	14
2.5	Lateral earth pressure diagrams against braced	
	sheeting as proposed by Tshebotarioff (1973)	15
2.6	Determination of the modulus of subgrade reaction	
	from insitu test results	16
2.7	Schematic diagram illustrates Caspe (1969)	
	analytical method for estimating the sett.	
	distribution adjacent to the excavation	22
2.8	Summary of soil settlements behind insitu walls	
	(After Peck, 1969)	24
2.9	Maximum lateral movement for the insitu walls and	
	settlements in the soil retained by insitu walls in	
	stiff clays, residual soils and sands (After Clough	
	and O'Rourke, 1990	27
2.10	Summary of measured settlements and horizontal	
	displacement adjacent to excavations in stiff to	
	very hard clay (After Clough and O'Rourke, 1990)	28
2 11	Predicted maximum lateral wall movement by finite	

	element analysis modelling stiff soil conditions	
	(After Clough and O'Rourke, 1990)	30
2.12	2 Design curves to obtain maximum lateral wall	
	movement and settlement for soft to medium clays	
	(Afetr Clough and O'Rourke, 1990)	32
2.13	Typical profiles of movement for braced and tied	
	back walls (After Clough and O'Rourke, 1990)	34
2.14	Dimensionless settlement profiles recommended for	
	estimating the distribution of settlement adjacent	
	to excavations in different soil types (After Clough	
	and O'Rourke, 1990)	36
2.15	Summary of measured settlements caused by the	
	installation of concrete diaphragm walls (After	
	Clough and O'Rourke, 1990)	37
3.1	The program flow chart	43
3.2	Local coordinates system for the eight nodes	
	element	47
3.3	Hyperbolic model for stress-strain behaviour	
	(After Duncan et al., 1984)	61
3.4	Modelling unloading-reloading moduli without	
	introducing computational instability (After	
	Duncan et al, 1984	66
3.5	Spring type interface element	72
3.6	Stress-deformation curves for the interface	
	elements (After Dessouki, 1985)	75
3.7	Hyperbolic simulation of the experemental direct	

3.8	Simulation of the excavation process in the F.E.	
	analysis	78
4.1	Cross-section details of the tunnel section and	
	the soil profile at this location (After El-Nahhas	
	et al, 1988)	82
4.2	Genearal layout of instrumentation at the tunnel	
	test section (After Shalaby, 1989)	83
4.3	Construction procedures steps for the running	
	tunnel test section (After El-Nahhas et al., 1988)	85
4.4	Simulation of the construction stages in the finite	
	element analysis	86
4.5	The finite element mesh used in the analysis of	
	stages 3 to 7	91
4.6	The finite element mesh used in the analysis of	
	stages 1 and 2	92
4.7	Propagation of the computed horizontal movement	
	during the different construction stages	94
4.8	Propagation of the computed settlement adjacent to	
	the wall during the different construction stages.	95
4.9	Propagation of the computed heave inside the	
	excavation during the different construction stages.	96
4.10	Distribution of the lateral earth pressure on the	
	diaphragm wall during the different construction	
	stages	97
4.11	Comparison between the results of the finite element	
	analysis and the field measurements for the	
	horizontal deformation at stage No 6	101