

Detection of Aberrant Promoter Hypermethylation of Some Tumor Suppressor Genes in Non-Small Cell Lung Cancer in Egyptian Patients

A Thesis submitted for the degree of Ph.D. in Biochemistry

By Riham Abdel Hamid Haroun

M.Sc., Biochemistry, 2011

Under Supervision of

Prof. Dr. Kamal Ali Shalaby

Professor of Biochemistry Faculty of Science Ain Shams University

Prof. Dr. Nadia Iskandar Zakhary

Former Minister of Scientific Research and Professor of Medical Biochemistry National Cancer Institute Cairo University

Prof. Dr. Mohamed Ragaa Mohamed

Professor of Biochemistry and Molecular Biology Faculty of Science Ain Shams University

Prof. Dr. Abdelrahman Mohamed Abdelrahman

Professor of Surgical Oncology National Cancer Institute Cairo University

Dr. Eman Ibrahim Kandil

Assistant Professor of Biochemistry Faculty of Science Ain Shams University

الكشف عن الميثلة الزائدة الشاذة في المناطق المحفزة لبعض الجينات المثبطة للأورام في سرطان الرئة ذو الخلايا غير الصغيرة في المرضى المصريين

رسالة مقدمة للحصول على درجة الدكتوراه في فلسفة العلوم في الكيمياء الحيوية

الخاصة بالطالبة

ريهام عبد الحميد هارون

ماجستير الكيمياء الحيوية (٢٠١١)

تحت إشراف

أ.د. محمد رجاء محمد اذ الكرواء الحروبة الرواء عالما

أستاذ الكيمياء الحيوية والبيولوجيا الجزيئية كلية العلوم- جامعة عين شمس

أ.د. عبد الرحمن محمد عبد الرحمن أستاذ جراحة الأورام المعهد القومي للأورام- جامعة القاهرة أد. كمال على شلبي

أستاذ الكيمياء الحيوية كلية العلوم- جامعة عين شمس

أ.د. نادية اسكندر زخارى

وزير البحث العلمى الاسبق وأستاذ الكيمياء الحبوبة الطبية

المعهد القومي للأورام- جامعة القاهرة

د. إيمان إبراهيم قنديل

أستاذ مساعد الكيمياء الحيوية كلية العلوم- جامعة عين شمس

Biography

Name : Riham Abdel Hamid Haroun

Date of Graduation: May 2005, Faculty of Science,

Biochemistry Department,

Ain Shams University.

Degree awarded : M.Sc. in Biochemistry (2011).

Occupation : Assistant lecturer in Biochemistry

Department, Faculty of Science,

Ain Shams University.

Contents

	Page
Acknowledgement	iv
Abstract	vi
List of Abbreviations	viii
List of Tables	xii
List of Figures	xiv
Introduction	1
Aim of the Work	3
Chapter 1: Review of Literature	4
1.1- Lung Cancer	4
1.1.1- Histological Classification of Lung Cancer	6
1.1.1.1- Non-Small Cell Lung Carcinomas	. 10
1.1.1.1.1 - Sauamous Cell Carcinoma (SCC)	. 10
1.1.1.1.2- Adenocarcinoma (ADC)	. 11
1.1.1.3- Large Cell Undifferentiated Carcinoma (LCC)	12
1.1.1.4- Carcinoids	13
1.1.1.2- Small Cell Lung Carcinoma	14
1.1.2- Staging of Lung Cancer	14
1.1.2.1- Staging of NSCLC	. 15
1.1.2.1- Staging of SCLC	. 18
1.1.3- Symptoms of Lung Cancer	18
1.1.4- Diagnosis of Lung Cancer	19
1.1.5- Risk factors of Lung Cancer	20
1.1.5.1- Tobacco smoking	. 21
1.1.5.2- Passive smoking	21
1.1.5.3- Diet and food supplements	22
1.1.5.4- Occupational exposure	23

1.1.5.5- Air pollution	23
1.1.5.6- Radiation	
1.1.5.7- Viral infection	24
1.1.5.8- Other factors	
1.1.6- Molecular Biology of Lung Cancer	
1.1.6.1- Activation of oncogenes in human lung cancer	
1.1.6.2- Inactivation of tumor suppressor genes (TSGs) in hu	
lung cancer	28
1.1.6.3- Genetic Susceptibility	31
1.2- Epigenetic Modifications	33
1.2.1- DNA methylation	34
1.2.2- Histone modifications and chromatin remode	ling
	41
1.2.3- DNA methylation and cancer	47
1.2.3.1- Hypermethylation in Cancer	
1.2.3.2- Hypomethylation in Cancer	
1.2.3.3- DNA methylation as a marker for tumor diagnosis	
prognosis	53
1.3- FHIT gene	55
1.4- GSTP1 gene	63
1.5- p16 gene	69
Chapter 2: Subjects and Methods	75
2.1- Subjects	
2.2- Chemicals & Kits	. 76
2.3- Methods	. 77
2.3.1- Extraction of genomic DNA	. 77
2.3.2- Bisulfite conversion and cleanup of DNA for methyla	ation
analysis	. 81

2	2.3.3- Methylation-Specific PCR	. 88
	2.3.4- Agarose gel electrophoresis	
2	2.3.5- Extraction of total RNA	93
2	2.3.6- First Strand cDNA Synthesis	97
2	2.3.7- Quantitative (real-time) PCR	101
2	2.3.8- Statistical Analysis	105
Chapter	3: Results	107
Chapter	4: Discussion	142
Summar	ry	153
Reference	ces	158
Arabic S	Summary	191

Acknowledgment

Thanks are due first and last to **Almighty GOD** as I deeply owe **HIM** mercy, support and guidance in my whole life.

I would like to express my deep thanks and sincere gratitude to **Prof. Dr. Kamal Ali Shalaby,** Professor of Biochemistry, Faculty of Science, Ain Shams University, for his endless help, constant guidance, sincere encouragement, valuable advice and criticism. It is a great honour for me to work under his supervision throughout my postgraduate career.

I am deeply indebted to **Prof. Dr. Nadia Iskandar Zakhary,**Professor of Medical Biochemistry, National Cancer Institute, Cairo
University, for suggesting the point and for her active supervision,
valuable advice, precious comments, and continuous encouragement.

It is really difficult for me to find words that can express my deep gratitude and sincere appreciation towards **Prof. Dr. Mohamed**Ragaa Mohamed, Professor of Biochemistry, Faculty of Science, Ain Shams University, for his creative thinking, valuable suggestions, fruitful discussion and profound revision of the results and discussion of the manuscript.

I am deeply indebted to **Prof. Dr. Abdelrahman Mohamed**Abdelrahman, Professor of Surgical Oncology, National Cancer
Institute, Cairo University, for providing the tissue samples and for his
great effort, kindness, precious comments, and continuous
encouragement.

I would like to express my deepest thanks and sincere gratitude to **Dr. Eman Ibrahim Kandil,** Associate Professor of Biochemistry, Faculty of Science, Ain Shams University, for her kindness, assistance, and close supervision.

Also, I would like to thank the staff members in the Departments of Biochemistry, Faculty of Science, Ain Shams University for the generous facilities they offered me during the practical work of this study.

At last, I would like to express my profound gratitude to my family specially my father for their endless love and concern.

Abstract

Riham Abdel Hamid Haroun. Detection of Aberrant Promoter Hypermethylation of Some Tumor Suppressor Genes in Non-Small Cell Lung Cancer in Egyptian Patients. Biochemistry Department, Faculty of Science, Ain Shams University.

Background: Methylation of tumor suppressor genes has been investigated in all kinds of cancer. Identification of tumor specific epigenetic alterations can be used as a molecular marker of malignancy, which can lead to better diagnosis, prognosis and therapy. Therefore, the aim of this study was to evaluate the association between gene hypermethylation and expression of fragile histidine triad (FHIT), glutathione Stransferase P1 (GSTP1) and p16 tumor suppressor genes and various clinicopathologic characteristics in primary non-small cell lung carcinomas (NSCLC).

Materials and Methods: The study included 28 primary non-small cell lung carcinomas, where an additional 28 tissue samples taken from apparently normal safety margin surrounding the tumor serving as controls. Methylation-specific polymerase chain reaction (MSP) was performed to analyze the methylation status of FHIT, GSTP1 and p16 while

their mRNA expression levels were measured using a realtime PCR assay with SYBR Green I.

Results: The methylation frequencies of the genes tested in NSCLC specimens were 53.57% for FHIT, 25% for GSTP1, and 0% for p16, and the risk of FHIT hypermethylation increased among patients with NSCLC by 2.88, while the risk of GSTP1 hypermethylation increased among patients with NSCLC by 2.33. Hypermethylation of FHIT gene showed a highly significant correlation with pathologic stage (p < 0.01) and a significant correlation with smoking habit and FHIT mRNA expression level (p < 0.05). In contrast, no correlation was observed between the methylation of GSTP1 or p16 and smoking habit or any other parameter investigated (p > 0.05).

<u>Conclusions:</u> Results of the present study suggest that methylation of FHIT is a useful biomarker of biologically aggressive disease in patients with NSCLC. FHIT methylation may play a role in lung cancer later metastatic stage while GSTP1 methylation may play a role in the early pathogenesis of lung cancer rather than in its later metastatic stage.

Keywords: fragile histidine traid, glutathione S-transferase P1, p16, promoter methylation, non-small cell lung carcinoma.

List Of Abbreviations

5mC	5-methylcytosine
AC	Atypical carcinoid
ADC	Adenocarcinoma
AIS	Adenocarcinona in situ
ATS	American thoracic society
BAC	Bronchioloalveolar carcinoma
bcl-2	B-cell lymphoma 2
BP	Benzo[a]pyrene
BPDE	Benzo[a]pyrene diol epoxide
BRCA1	Breast cancer 1
СВР	CREB binding protein
CDH1	E-cadherin
CDH13	H-cadherin
CDK	Cyclin-dependent kinase
CDK-4	Cyclin-dependent kinase-4
CDKN2A	Cyclin-dependent kinase inhibitor 2A
cDNA	Complementary DNA
CFSs	Common fragile sites
c-myc	Myelocytomatosis viral oncogene homolog
CpG	cytosine-guanine
CREB	cAMP response element-binding protein

List Of Abbreviations (Cont.)

CYP1A1	Cytochrome P450, family 1, subfamily A,
	polypeptide 1
DAPK	Death-associated protein kinase
DMN	Dimethylnitrosamine
DMS	Dimethyl sulfate
DNA	Deoxyribonucleic acid
DNMTs	DNA methyltransferases
ED	Extensive disease
EGFR	Epidermal growth factor receptor
ERS	European respiratory society
FADD	Fas-associated death domain
FUS1	Fused in Sarcoma
GAPDH	Glyceraldehyde 3-phosphate dehydrogenase
GSTP1	Glutathione S-transferase P1
GSTs	Glutathione S-transferases
HATs	Histone acetyltransferases
HDACs	Histone deacetylases
HDMs	Histone lysine demethylases
HIT	Histidine triad
HIV	Human immunodeficiency virus
HMTs	Histone methyltransferases

List Of Abbreviations (Cont.)

HPV	Human papillomavirus
hTERT	Human telomerase reverse trancriptase
IASLC	International Association for the Study of
	Lung Cancer
IGFBP 3	Insulin-like growth factor binding protein 3
JNK	C-Jun-NH2 kinase
K-ras	Kirsten rat sarcoma viral oncogene homolog
LCC	Large cell carcinoma
LD	Limited disease
LOH	Loss of heterozygosity
MAPK	Mitogen-activated protein kinase
MBD	Methyl-cpg-binding domain
MDM2	Mouse double minute 2 homolog
mRNA	Messenger RNA
MSP	Methylation-specific PCR
NSCLC	Non-small cell lung cancer
PAH	Polycyclic aromatic hydrocarbons
RAR-β	Retinoic acid receptor-β
RASSF1	Ras association domain-containing protein 1
Rb	Retinoblastoma gene
RNA	Ribonucleic acid

List Of Abbreviations (Cont.)

RRR	Relative risk ratio
SAM	S-adenosyl methionine
SCC	Squamous cell carcinoma
SCLC	Small cell lung cancer
SEMA3B	Semaphorin-3B
SWI/SNF	Switch/Sucrose nonfermentable
TC	Typical carcinoid
TIMP3	Metalloproteinase inhibitor 3
TSGs	Tumor suppressor genes
WHO	World health organization