

BETA2-MICROGLOBULIN-RELATED AMYLOIDOSIS IN CHILDREN WITH END-STAGE RENAL FAILURE

THESIS

SUBMITTED FOR PARTIAL FULFILMENT OF THE M.D. DEGREE IN PAEDIATRICS

Ву

Dr. MOHAMED HESHAM M. EZZAT ABDEL HAMEED

M.B.,B.Ch., M.S. in Paediatrics
Assistant Lecturer of Paediatrics
Faculty of Medicine - Ain Shams University

Supervised by

Prof. Dr. FARIDA AHMED FARID

Professor of Paediatrics
Faculty of Medicine - Ain Shams University

63961

Prof. Dr. MOHAMED ABDEL AALA EL-SHAWARBY

Professor of Pathology Faculty of Medicine Ain Shams University

Dr. ASHRAF ABDEL BAKY SALAMA

> Lecturer of Paediatrics Faculty of **M**edicine Ain Shams University

Dr. KHALED SALAH AWWAD

1991

Assistant Professor of Paediatrics Faculty of **M**edicine Ain Shams University

Dr. HALA AHMED TALKHAN

Lecturer of Clinical Pathology Faculty of Medicine Ain Shams University

1998

ACKNOWLEDGMENT

First and foremost thanks to **Allah**, the most beneficent and merciful.

I am greatly indebted to **Prof. Dr. Farida Ahmed Farid**, Professor of Paediatrics and Paediatric Nephrology, Ain-Shams University for her constructive remarks and valuable advice. Working under her supervision is all at once both pleasurable and educational. Her motherly attitude towards me is unique and memorable.

To Prof. Dr. Mohamed Abdel Aala El-Shawarby, Professor of Pathology, Ain-Shams University, I would like to express my sincere gratitude; he gave me an excellent example of how a true scientist should guide and supervise his student's work. He has provided me with all the available facilities so that the histopathologic work; the corner stone of this thesis, would never see light without his constant, generous and faithful supervision.

DR. KHALED SALAH AWWAD, Assistant Professor of Paediatrics, Ain-Shams University, his worth of gratitude for his precious time and moral support throughout the course of this work. He has spared no effort so that this work would have been completed. He has been a faithful director and a meticulous supervisor. I owe his excellency a lot, yet no words can express my feelings towards him but all what can I say, which is the best, is asking God to bless him.

I am sincerely thankful to *Dr. Ashraf Abdel Baky Salama*, *Lecturer of Paediatrics, Ain-Shams University*, for his endless encouragement and cooperation especially during choosing the topic of this thesis. Actually, he is the engineer of this work.

This work would have never been completed without the great help, close supervision and the meticulous lab work offered by **Dr. Hala Ahmed Talkhan**, Lecturer of Clinical Pathology, Ain-Shams University.

I would like to convey my warmest gratitude to *Dr. Mahmoud Tarek Abdel Moneim*, Lecturer of Paediatric, Ain-Shams University and to *Dr. Hany Mohamed Amin*, the highly expert specialist in the Cardiology and Echocardiography Unit, Children's Hospital, Ain-Shams University for their thankful cooperation at any time despite this work was not under their supervision yet they did the best as if they were.

Finally, I acknowledge my patients and their parents for their cooperation and their sincere feelings. I also acknowledge the team of the Paediatric Dialysis Unit, Children's Hospital, Ain-Shams University as well as the technician team of the Radiology Department for their endless cooperation.

MOHAMED HESHAM M. EZZAT

* * * * * *

CONTENTS

List of abbreviations	i
List of tables	iv
List of figures	vi
Introduction	1
Aim of the work	2
Review of Literature	3
* Chronic renal failure	3
* Beta ₂ -microglobulin	19
* Amyloidosis (B-Fibrillosis)	44
* Dialysis-Related-Amyloidosis (DRA)	74
Subjects and Methods	99
Results	108
Discussion	156
Recommendations	168
Summary and Conclusion	169
References	174
Arabic Summan	

LIST OF ABBREVIATIONS

μ**g** : microgram

A° : Angstrom

AA protein : Amyloid A Protein

ACE : Angiotensin Converting Enzyme

ADH : Antidiuretic Hormone

AEF : Amyloid Enhancing Factor

AGEs : Advanced Glycation End Products

AIDS : Aquired Immuodeficiency Syndrome

AL : Amyloid Light Chain

ANP : Atrial Natriuretic Peptide

ARC : AIDS Related Complex

B-amyloid : Beta-amyloid

B₂-m : Beta₂-microglobulin

C : Control
Ca : Calcium

CAPD : Continuous Ambulatory Peritoneal Dialysis

CBD : Clinical Bone Disease

CCPD : Continuous cycler-Assisted Peritoneal Dialysis

Ccr : Creatinine Clearance

CGN : Chronic GlomerulonephritisCJD : Creutzfeldt-Jakob-DiseaseCNS : Central Nervous System

Cr : Creatinine

Cr⁵¹EDTA : Chromium 51-Ethytene Diamine Tetracetate

CRF : Chronic Renal FailureC-RP : C-Reactive ProteinCSF : Cerebrospinal Fluid

CTS : Carpal Tunnel Syndrome :

CVD : Collagen Vascular Disease

CVS : Cardiovascular System

Da : Dalton

DCT : Distal Convoluted Tubules

2D-ECHO: Two Dimensional Echocardiography

DRA : Dialysis Related Amyloidosis

ECF : Extracellular Fluid ECG : Electrocardiogram

EIA : Enzyme Immuno-assay

EMG : Electromyogram

ESRD : End Stage Renal Disease

F : Female

FAN : Familial Amyloid Cardiomyopathy
FAN : Familial Amyloid Nephrophathy
FAP : Familial Amyloid Polyneuropathy

FFI : Fatal Familial Insomnia

FMF : Familial Mediteranean Fever

GAGs : Glycosaminoglycans

GFR : Glomerular Filtration Rate

GSS : Gertsmann-Straussler-Scheinker

HCHWA-D : Hereditary Cerebral Haemorrhage With Amyloid-

Dutch Type

HD : Haemodialysis

HIV : Human Immunodeficiency Virus

HLA : Human Leucocyte Antigen

I-DOX : 4-iodo-4-deoxydoxorubicin

IGF-1 : Insulin-like Growth Factor-1

IGF-2 : Insulin-like Growth Factor-2

igs : Immunoglobulins

IL₁ : Interleukin 1
 IL₂ : Interleukin 2
 K : Potassium
 Kg : Kilogram

KUF : Ultrafiltration Coefficient

L : Liter

L_K : Kappa Light Chain

L_λ : Lambda Light Chain

M : Male

M²: Meter Square

MEN -2A : Multiple Endocrinal Neoplasia Type 2a

MHC : Major Histocompatibility Complex

Min : Minute

mL : Milliliter

MRI : Magnetic Resonance Imaging

Na : Sodium

ng : nanogram

NS : Not Significant

N-terminus : Amino-terminal

O2 : Superoxide anion

OH : Hydroxyl

PAN : Poly Acryl Nitrile

P-Component : Plasma Component

PCT : Proximal Convoluted Tubules

PDU : Pediatric Dialysis Unit

PGL : Persistant Generalized Lymphadenopathy

PGs : Proteoglycans

Ph : Phosphorus

PI : Isoelectric Point

PMMA : Polymethylmethacrylate

PrP : Protease-Resistant-Protein

PS : Patient serum

PTH : Parathyroid hormone

PU : Patient urine

RB : Reagents Blank

RFLP : Restriction Fragment Length Polymorphism

ROD : Renal Osteodystrophy

S : Standard

SAA : Serum Amyloid Associated Protein

SAP protein : Serum Amyloid Protein

SCD₄ : Soluble CD₄ SCD₈ : Soluble CD₈

Scr : Serum creatinine

SD : Standard Deviation

sIL_{2r} : Soluble IL₂ receptors

SN : Serial Number

T : Tricuspid

TSEs : Transmissable Spongiform Encephalopathies

TTR : Transthyretin

UK : United Kingdom

US : United States

UTI : Urinary Tract Infection

Y : Year

LIST OF TABLES

Table (I):	Aetiology of CRF in Children of US	4
Table (II):	Aetiology of CRF in Egyptian Children	5
Table (III):	Stages of progressive loss of renal function	6
Table (IV):	Clinical features of uremic encephalopathy	12
Table (V):	Common clinical problems during HD therapy	17
Table (VI):	The physiochemical properties of B ₂ -m	20
Table (VII):	Classification of Amyloidosis	46
Table (VIII):	B ₂ -m involved in formation of amyloid fibrils protein	75
Table (IX):	Prevalence of shoulder pain and/or CTS in patients on regular HD	86
Table (X):	Rheumatologic manifestations of DRA	86

TABLES OF RESULTS

Table (1):	Individual clinical and laboratory data of the control group	108
Table (2):	Individual clinical data of children with ESRD on regular HD	109
Table (3):	Individual laboratory data of children with ESRD on regular HD	111
Table (4):	Individual radiological signs of children with ESRD on regular HD	113
Table (5):	Individual echocardiographic findings of children with ESRD on regular HD	115
Table (6):	Aetiology of ESRD among children on regular HD	117
Table (7):	Clinical manifestations suggestive of DRA among children with ESRD on regular HD	119
Table (8):	Comparison between serum B ₂ -m concentration in the control group and children on regular HD	121
Table (9):	Serum B ₂ -m concentration in both males and females children with ESRD on regular HD	123
Table (10):	Correlation between mean concentration of serum B ₂ -m and different causes of ESRD	126
Table (11):	Correlation between B ₂ -m and parameters of chemical profile in both the control group and children on regular HD	129
Table (12):	The effect of unsubstituted cellulose and synthetic polysulfone dialyzer membranes on clearance of B _z -m in children on regular HD	130
Table (13):	Radiological signs in children with ESRD on regular HD	132
Table (14):	Echocardiographic findings of children with ESRD on regular HD	142

LIST OF FIGURES

Figure (I):	Pathogenesis of Renal Osteodystrophy	14
Figure (II):	Structure of B ₂ -microglobulin	21
Figure (III):	Schematic outline of some mechanisms involved in cellular activation during haemodialysis and their possible relation to the development of dialysis-related amyloidosis via a limited proteolysis of B ₂ -m	82

FIGURES OF RESULTS

Figure (1):	Aetiology of ESRD among children on regular HD	118
Figure (2):	Clinical manifestations suggestive of DRA among children with ESRD on regular HD	120
Figure (3):	Comparison between mean serum B ₂ -m concentration in the control group and children with ESRD on regular HD	122
Figure (4):	Correlation between serum B ₂ -m and age in control group	124
Figure (5):	Correlation between serum B ₂ -m and age in children with ESRD on regular HD	125
Figure (6):	Serum B ₂ -m concentration in children on regular HD with and without clinical bone disease	128
Figure (7):	The effect of dialyzer membranes on clearance of B ₂ -m	131

Figure (8):	Radiological signs in children with ESRD on regular HD	133
Figure (9):	B ₂ -m concentration in children with ESRD on regular HD with and without radiological bone disease	134
Figure (10):	Plain X-ray, right shoulder joint, AP view, showing multiple punched out cysts in the humeral head	135
Figure (11):	Plain X-ray, right shoulder joint, AP view, showing exstensive cystic changes in the humeral head	136
Figure (12):	Plain X-ray, left wrist joint, AP view, showing multiple subchondral subarticular bone cysts in the distal ends of radius and ulna.	137
Figure (13):	Plain X-ray, right knee joint, AP view, showing sub- articular cystic changes, erosions and lucent areas in the distal ends of long bones	138
Figure (14):	howing spondyloarthropathy more evident in C3-C4, C4-C5, and C5-C6. The vertebral end plates are irregular, eroded with osteophytes formation	139
Figure (15):	Plain X-ray, lumbar vertebrae, AP view, showing severe osteopenia, multiple cysts, erosions and irregularities most prominant at L3-L4.	140
Figure (16):	Plain X-ray, lumbar vertebrae, lateral view, showing erosions and destruction of the intervertebral disc (L2-L3) with subarticular cysts and synostosis at their anterior margin.	141
Figure (17):	Echocardiographic findings of children with ESRD on regular HD	143
Figure (18):	B ₂ -m concentration in children with ESRD on regular HD with and without echocardiographic findings	144
Figure (19)	2D-ECHO, showing granular sparkling in the interventricular septum.	145
Figure (20)	 2D-ECHO, showing granular sparkling in the inter- ventricular septum with hypertrophied both inter- ventricular and interatrial septa. 	146

Figure (21):	2D ECHO, showing symmetrical ventricular wall thickness and mild to moderate pericardial effusion.	147
Figure (22):	2D-ECHO, showing hypertrophied interatrial septum with the characteristic bilobed configuration	148
Figure (23):	2D-ECHO, showing hypertrophied interventricular septum with granular sparkling and diffuse thickening of the mitral valve.	149
Figure (24):	2D-ECHO, showing diffuse thickening of the tricuspid valve.	150
Figure (25):	2D-ECHO, showing mitral flow pattern with mitral regurge.	151
Figure (26):	2D ECHO, showing tricuspid flow pattern with tricuspid regurge.	152
	COLOUR PLATES	
Colour plate (11): Diffuse, fine, granular amyloid deposition in the subcutaneous abdominal fat seen under the polarized light. Congo red. X100. Patient number (3)	154
Colour plate (2): Diffuse heavy amyloid deposition in the abdominal pad of fat under the polarized light. Congo red. X100. Patient number (6)	155