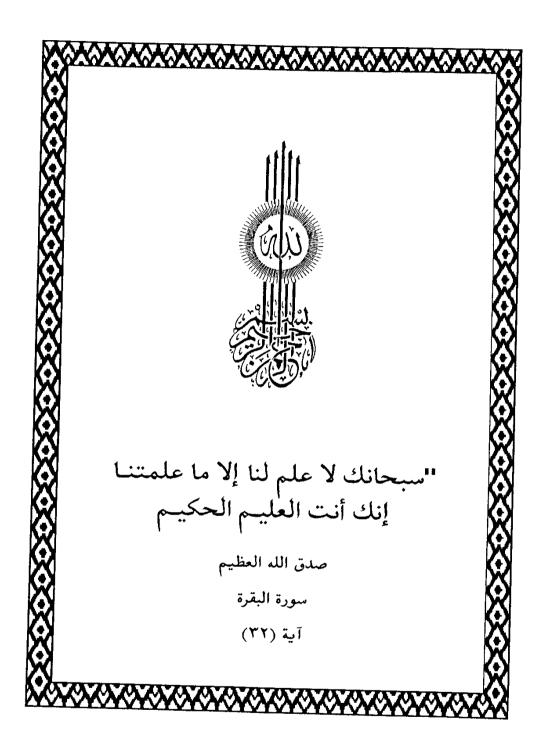
EXPERIMENTAL STUDIES ON THE RESPONSE OF THE SKIN AND SUBCUTANEOUS TISSUE TO THE DIFFERENT SURGICAL SUTURE MATERIALS AVAILABLE IN EGYPT

Supervised by

Prof. Dr.

Madeha Abd El-Moneim Ashry Ph.D.

Professor of Histology & Histochemistry, College for Girls, Ain Shams University


Prof. Dr.

Mohamed Galal Ez El-Dein, (FRCS, Ed.)

Consultant, General Surgery, G.I.T., & Tumors, Head of Surgery Departments, El-Sahel Teaching Hospital.

> COLLEGE FOR GIRLS AIN SHAMS UNIVERSITY 1994

Acknowledgement

First, and foremost, I feel always indebted to GOD, the most kind and the most merciful. Thanks to "who made me able to accomplish this work.

Words do fail me to express my sincerest appreciation to my parents and also I would like to express my thanks to them for their help and cooperation.

It is with great honor that I take this opportunity to record my appreciation and heartful gratitude to the Noble character and gentle behavior of Prof. Dr. Madeha Abd El Moneium Ashry, Professor of Histology and Histochemistry, Department of Zoology, Faculty of Girls, Ain Shams University. So I wish to thank her, for all the time she devoted for reading and correcting the manuscript. Her advice and support are deeply appreciated, without whose valuable supervision. this work, wouldn't come to light. Her continuous in time. And I would like to express my deepest an cordial appreciation to her whose motherly guidance has shown me any may in this work.

I am deeply indebted to Dr. Mohamed Galal Ezz El-Dein,

Consultant, General Surgery, GIT & Tumours, and Head of Surgery Depeartments, El-Sahel Teaching Hospital, for suggesting and planning this work, and he was very generous in time and effort. He followed closely the progress of this thesis with never failing interest, facilitating all of the problems which had come up. No words can satisfy and explain my deepest gratitude for his faithful supervision, enthusiastic cooperation, continuous encouragement, guidance and support from the beginning to the and of this work. He supplied me with a lot of his time and own experience. Without his kind help and advice, this work would not have come to light. It is a pleasure to work under his supervision.

I would like to express my deepest gratitude and respect to Dr. Ibrahim Fayez Elias, Head of Department of Medical Registeration and Statistics, El-Sahel Teaching Hospital, for his fatherly care, constructive criticism throughout the whole work. Also I wish to express my everlasting gratitude to him, for his valuable advice and concrete help in the statistical analysis of the results, and the final layout of this work.

I would like to express my thanks to all the staff members of the Department of Zoology, College for Girls, Ain Shams University, my colleagues and to every person in the Surgery Department in El-Sahel Teaching Hospital for their continuous support cooperation and help. Indeed I shall not forget them all my life.

I should also like to thank all those who generally gave me time and effort to help me accomplish this work.		

THE PREMASTER STUDIES

- Histology
- Histopathology
- Physiology
- Invertebrates (Zoology)
- Statistics
- English Language

ABSTRACT

The aim of the present study was to differentiate the reaction of the skin and subcutaneous tissue; and blood to the different suture materials available in the Egyptian market. These suture materials included; Absorbable: Plain- and Chromic-Catgut, Vicryl (mucopolysaccharide), and PDS (Polydioxanone); and Non-absorbable: Ethilone, Silk, Prolene (Monofilament Nylon), and Stainless Steel.

LIST OF ABBREVIATIONS

1 h First hour

2 h Second hour

ABP Anastomotic Bursting Pressure

B.C. Before Christ

Ch. Catg. Chromic Catgut

Cm Centimetre
Cont. Continuous

E.S.R. Erythrocytic Sedimentation Rate

F.A.V. Fast Absorption Vicryl
H & E Haematoxylin and Eosin

Hb Haemoglobin

g Gram

Kg Kilogram

MG Mammary Gland

min minutes
ml millilitre
n number

PDS Polydioxanone PDX Polydioxanone

PGL Native Analogue of Vicryl

PPL Polypropylene

P.C.V. Packed Cell Volume

R.B.Cs. Red Blood Cells

SEM Scanning Electron Microscopy

TAPVD Total Anomalous Pulmonary Venous Drainage

TRS Tissue Response

U Micron

ULC Appose metal stapler

Um Micrometre

W.B.Cs. White Blood Cells

X 40 Magnification 40 times

CONTENTS

	Page
INTRODUCTION AND REVIEW OF LITERATURE	1
GENERAL CLASSIFICATION OF SURGICAL SUTURE	
MATERIALS	4
LOCAL EFFECTS OF SURGICAL SUTURE MATERIAL	S 5
MONOFILAMENT SURGICAL SUTURE MATERIALS	11
ABSORBABLE/ NON-ABSORBABLE SURGICAL	
SUTURE MATERIALS	14
SYNTHETIC SURGICAL SUTURE MATERIALS	16
STANDARDS FOR SURGICAL SUTURE MATERIALS	18
COMMONLY USED SUTURE MATERIALS IN SKIN SURGERY:	
(1) Catgut	20
(2) Nylon, TEFLON, DACRON, NOVATIL	25
(3) Polydioxanone (PDS / PDX)	27
(4) Prolene	36
(5) Silk	46
(6) Stainless Steel	49
(7) Vicryl	51
GENERAL COMPARISON BETWEEN SURGICAL	31
SUTURE MATERIALS	55
MATERIAL AND METHODS	59
ESULTS	78
ISCUSSION	181
ONCLUSION	194
UMMARY	194
EFERENCES	
RABIC SUMMARY	200

LIST OF TABLES

Table (1): Advantages and disadvantages of Catgut	23
Table (2): Influence of wound infection on late wound failure in	
580 patients reviewed at 1 year	31
Table (3): Properties, advantages and disadvantages of Polyglycoli	c
acid and Polyglactin (absorbable)	57
Table (4): Properties, advantages and disadvantages of Polyster	
suture	58
Table (5): Group distribution	63
Table (6): Haematological data of different sutures under study	
in days 2, 7 & 14 after stitching	81
Table (7): Mean Haemoglobin according to type of suture at days	S-
2, 7 & 14 after stitching	83
Table (8): Mean R.B.Cs. count according to type of suture at days	_
2, 7 & 14 after stitching	87
Table (9): Mean P.C.V. according to type of suture at days-2, 7 &	
14 after stitching	91
Table (10): Mean W.B.Cs. count according to type of suture at day	/S-
2, 7 & 14 after stitching	95
Table (11): Mean E.S.R. (hour 1) according to type of suture at	
days-2, 7 & 14 after stitching	99

LIST OF TABLES (Cont.)

		<u>ige</u>
Table	2): Mean E.S.R. (hour 2) according to type of suture at	
	days-2, 7 & 14 after stitching	103
Table	13): Scoring for healing process (according to	
	histopahology) at day-14 for the different	
	sutures under examination	180
Table	14): Scoring for local tissue reactions at day-14 for the	
	different sutures under examination	180

LIST OF FIGURES

	Page
Fig. (1): Chemical structure of PDS	28
Fig. (2): Percent changes in Hb by duration in days using differen	t
sutures	84
Fig (3): Hb after 2, 7 & 14 days using different sutures	85
Fig. (4): Percent changes in R.B.Cs. by duration in days using	
different sutures	88
Fig. (5): R.B.Cs. count after 2, 7 & 14 days using different sutures	89
Fig. (6): Percent changes in P.C.V. by duration in days using	
different sutures	92
Fig (7): P.C.V. after 2, 7 & 14 days using different sutures	93
Fig. (8): Percent changes in W.B.Cs. by duration in days using	
different sutures	96
Fig (9): W.B.Cs. count after 2, 7 & 14 days using different sutures	97
Fig. (10): Percent changes in E.S.R. (1h.) by duration in days using	<u>,</u>
different sutures	100
Fig (11): E.S.R. (1h.) after 2, 7 & 14 days using different sutures	101
Fig. (12): Percent changes in E.S.R. (2 h.) by duration in days using	g
different sutures	104
Fig (13): E.S.R. (2 h.) after 2, 7 & 14 days using different sutures	105
Fig. (14): Low-power view of skin section in the control group	
(H & E, x40)	107

LIST OF FIGURES (Cont.)

	Page
Fig. (15): High-power view of integument in the control group (H & E, x100).	108
Fig. (16): Photomicrograph of integumental section 2 days-post-	116
Stitching with Chromic Catgut (H & E, x40)	116
with Ethibond, (H & E, x40)	117
zone, after 2 days, (H & E, x100)	118
Fig. (19): Low-power view of skin section with Ethilone suture zo after 2 days (H & E, x40)	ne 119
Fig. (20): High-power view of skin section in Ethilone suture zone after 2 days, (H & E, x100)	120
Fig. (21): Photomicrograph of skin section, 2 days after stitching	120
with Plain Catgut, (H & E, x40)Fig. (22): Photomicrograph of integumental section 2 days post-	121
stitching with Polydioxanone (H & E, x40)	122
Fig. (23): High-power view of skin section in Polydioxanone (P.D.S.), after 2 days (H & E, x100)	123
Fig. (24): Photomicrograph of skin section, 2 days after stitching	
with Prolene (H & E, x40)	124