SECURITY ASSESSMENT BULK POWER SYSTEMS

A THESIS

PRESENTED TO

FACULTY OF ENGINEERING AIN SHAMS UNIVERSITY

BY

Eng. Hassan Ahmad EL_Dosoky Younes

FOR

The Ph.D. Degree In Electrical Engineering

Supervised By

PROF. Dr. SAAD L. MIKHAIL

Electrical Power & Machines Dept. Faculty Of Engineering - Ain Shams University

Dr. HAMDY M. EL-SHAER

Deputy Chairman

Egyptian Electricity Authority

Dr. ALI A. METWALLY

Electrical Power & Machines Dept Faculty Of Engineering - Ain Shams University

CAIRO 1985

EXALINERS

- 1. Prof. Dr. M.F. Saker

 Electrical Power & Machines Dept.

 Faculty of Engineering,

 Cairo University

 Giza, Egypt.
- 2. Dr. E.R. Lybrand
 Manager of Power Systems R & D
 Moore Systems Inc.
 San Jose, California,
 USA.
- 3. Prof. Dr. Saad L. Eikhail

 Electrical Fower & Machines Dept.

 Faculty of Engineering

 Ain Shams University

 Cairo Egypt.
- 4. br. d.M. El-Shaer

 Deputy Chairman

 Egyptian Electricity Authority

 Cairo Egypt.

ACKNOWLEDGEMENT

I would like to acknowledge Dr. S.L. Mikhail's valuable advice and encouragement during this work.

Sincere appreciation and gratitude goes to Dr. H.M. El-Shaer who initially suggested this topic as a worthwhile topic for investigation and who stimulated the author's interests in a graduate education, as well as his help and guidance throughout this work.

I would like to express my deepest gratitude and appreciation to Dr. A.A. Metwally for his valuable guidance, assistance and fruitfull discussions during the course of this work.

Additional appreciation is extended to Eng. A. Megazi, Eng. K. Yassin and Eng. E. Baligh for their assistance.

CONTENTS

	Page
ABBREVIATIONS	í
LIST OF FIGURES	i
LIST OF TABLES	ii
SUMMARY	iii
DOMINATEL	viii
CHAPTER 1 POWER SYSTEM SECURITY DEFINITIONS AND	
GENERAL CONCEPTS	1
1.1 Introduction.	1
1.2 Power System Operation.	3
1.2.1 Normal Operating State.	5
1.2.2 Emergency Operating State.	7
1.2.3 Restorative Operating State.	7
1.3 Power System Security.	8
1.4 Measurements of Power System Security.	9
1.5 Real-time Computer Control of Power :	10
Systems.	
CHAPTER 2 POWER SYSTEM SECURITY ASSESSMENT HISTORIC	A T
REVIEW.	
2.1 Introduction.	15
	12
2.2 Security Evaluation by the Operator.	15
2.3 Evaluation by DC Load Flow.	15

		Page
2.4	Evaluation by Distribution Factors.	20
2.5	Evaluation by Approximate AC Power	
	Flow.	27
2.6	Pattern Recognition Security	
	Assessment.	37
	2.6.1 Training Set.	39
	2.6.2 Feature Selection.	40
	2.6.3 Training Procedure.	43
	2.6.4 Testing of Classifiers.	43
2.7	Automatic Contingency Selection For	
	On-Line Security Analysis.	49
2.8	The Role of the NECC.	57
	2.8.1 System Configuration.	57
	2.8.2 Software Overview.	61
CHAPTER 3	CONTINGENCY EVALUATION USING DC LOAD	
	Flow.	66
3.1	Introduction.	66
3.2	Derivation of the Linear Model.	68
	3.2.1 A.G. Power Flow Equations.	68
	3.2.2 Linear Approximation of the Power	
	Flow Equations.	70
3.3	Network Data and Results.	74
3.4	Analysis of Results.	75

		Page
CHAPTER 4	CONTINGENCY EVALUATION BY USING	
	DISTRIBUTION FACTORS.	98
4.1	Introduction.	98
4.2	Derivation of Line and Generation	
	Distribution Factors.	100
4.3	Network Data and Results.	104
4.4	Analysis of Results.	105
CHAPTER 5	CONTINGENCY EVALUATION USING	
	ITERATIVE LINEAR AC POWER FLOW AND	
	ITS MODIFICATION.	125
5.1	Introduction.	125
5.2	ILPF Technique.	127
	5.2.1 Basic Expressions.	127
	5.2.2 Branch Outage Simulation.	129
	5.2.3 Generator Outage.	131
	5.2.4 Iterative Solution for Real and	
	Reactive Power.	133
	5.2.5 ILPF Results and Analysis.	136
5.3	Modified Algorithm MILPF.	157
	5.3.1 Introduction.	157
	5.3.2 Main Steps of MILPF Algorithm.	158
	a 2 2 UTIPH Recults and Analysis.	159

		Page
CHAPTER 6	COMPARISON OF CONTINGENCY EVALUATION	
	TECHNIQUES AND ITS APPLICATIONS TO A	
	LARGE FOWER SYSTEM.	171
6.1	Introduction.	171
6.2	Comparison of Results of Different	
	Techniques.	171
6.3	The Unified Power System of Egypt.	176
6.4	Results of Applying ILPF and MILPF	
	Techniques to the UPS of Egypt.	180
CHAPTER 7	CONCLUSIONS AND RECOMMENDATIONS.	196
APPENDICES		
(A)	SOLUTION OF LARGE SPARSE SYSTEM OF	
	LINEAR ALGEBRAIC EQUATIONS.	203
(B)	MATRIX INVERSION LEMMA.	208
REPERENCES.		211

ABBREVIATIONS

ACS Automatic contingency selection.

DF Distribution factors.

EHV Extra high voltage.

ILPF Iterative linear AC power flow.

LSC Load supplying capacity.

MILPF Modified iterative linear AC power flow.

NECC National energy control centre

PI Performance index.

PU Per unit.

RR Repetitive ranking.

SI Severity index.

SR Single ranking.

UPS Unified power system.

ZBUS Bus impedence matrix.

LIST OF FIGURES

		Page
1.1	Power System Operating States & Associated	
	State Fransition.	6
2.1	A Simple Two Class Pattern Classifier.	45
2.2	Hardware Configuration Overview.	58
2.3	Flow Diagram of the Security Functions.	65
3.1	17-bus Hetwork.	77
5.1	Flow Chart of the Initialization Phase.	137
5.2	Flow Chart of the ILPF Technique.	138
5.3	Flow Chart of the MILPF Technique.	160
6.1	500-220 kV Egyptian Network.	177

LIST OF TABLES

		Page
3.1	Line parameters.	78
3.2	Bus injections for 3000 MW load level.	79
3.3	Bus injections for 4110 AW load level.	80
3.4	DC load flow results, 3000 MW, 7-15 out,	
	w/o ic & C.	81
3.5	DC load flow results, 3000 MW, 9-11 out,	· -
	w/o R & C.	82
3.6	DC load flow results, 3000 MW, 11-13 out,	<u> </u>
	w/o R & C.	83
3.7	DC Load flow results, 3000 MW, 6-7 out,	
	w/o R & C.	84
3.8	DC load flow results, 4110 mW, 7-15 out,	○ 4
	w/o R & C.	85
3.9	DC load flow results, 4:10 MW, 9-11 out,	ری
	w/o it & C.	86
3.10	DC load flow results, 4110 mW, 11-13 out,	00
	w/o x & U.	70
3.11	DC load flow results, 4110 mm, 6-7 out,	78
	w/o k & C.	2.0
3.12	DC load flow results, 3000 MW, 7-15 out,	88
	with H & C.	
		ЯQ

		Page
3.13	DC load flow results, 3000 MW, 9-11 out,	
	with R & C.	90
3.14	DC load flow results, 3000 MW, 11-13 out,	
	with R & C.	91
3.15	DC load flow results, 3000 MW, 6-7 out,	
	with R & C.	92
3.16	DC load flow results, 4110 MW, 7-15 out,	
	with R & C.	93
3.17	DC load flow results, 4110 MW, 9-11 out,	
	with R & C.	94
3.18	DC load flow results, 4110 MW, 11-13 out,	
	with k & C.	95
3.19	DC load flow results, 4110 MW, 6-7 out,	
	with R&C.	96
3.20	Average deviation of DC load flow per	
	ou tage.	97
4.1	DF Results, 3000 MW, 7-15 out, DC Base	
	case.	108
4.2	DF results, 3000 MW, 9-11 out, DC base	
	case.	109
4.3	DF results, 3000 MW, 11-13 out, DC base	
	case.	110
4 • 4	DF results, 3000 MW, 6-7 out, DC base	
	case.	וון

		Page
4.5	DF Results, 4110 MW, 7-15 out, DC base	9
	case.	112
4.6	DF results, 4110 MW, 9-11 out, DC base	
	case.	113
4.7	DF results, 4110 MW, 11-13 out, DC base	
	case.	114
4.8	DF results, 4110 MW, 6-7 out, DC base	- the sales of
	case.	115
4.9	DF results, 3000 MW, 7-15 out, AC base	-17
	case.	116
4.10	DF results, 3000 MW, 9-11 out, AC base	110
	case.	117
4.11	DF results, 3000 MW, 11-13 out, AC base	411
	case.	118
4.12	DF results, 3000 LW, 6-7 out, AC base	110
	case.	119
4.13	DF results, 4110 MW, 7-15 out, AC base	11)
	case.	120
4.14	Dr results, 4110 MW, 9-11 out, AC base	20
	case.	121
4.15	DF results, 4110 MW, 11-13 out, AC base	161
	case.	122
4.16	DF results, 4110 MW, 6-7 out, AC base	166
	case.	123
		4.6.2

vi

4		Page
4.17	or bridge.	124
5.1	ILPF results, 3000 MW, 7-15 out.	141
5.2	ILPF results, 3000 MW, 9-11 out.	142
5.3	ILPF results, 3000 MW, 11-13 out.	143
5.4	ILPF results, 3000 MW, 6-7 out.	144
5.5	ILPF results, 4110 MW, 7-15 out.	145
5.6	ILPF results, 4110 MW, 9-11 out.	146
5.7	ILPF results, 4110 MW, 11-13 out.	147
5.8	ILPF results, 4110 MW, 6-7 out.	148
5.9	ILPF voltage results, 3000 MW, 7-15 out.	149
5.10	ILPF voltage results, 3000 MW, 9-11 out.	150
5.11	ILPF voltage results, 3000 MW, 11-13 out.	151
5.12	ILPF voltage results, 3000 MW, 6-7 out.	152
5.13	ILPF voltage results, 4110 MW, 7-15 out.	153
5.14	ILFF voltage results, 4110 MW, 9-11 out.	154
5.15	ILPF voltage results, 4110 MW, 11-13 out.	155
5.16	ILPF voltage results, 4110 MW, 6-7 out.	
5.17	MLPF results, 3000 mW, 7-15 out.	156
	milPF results, 3000 MW, 9-11 out.	162
	LILPF results, 3000 MW, 11-13 out.	163
	mllff results, 3000 MW, 6-7 out.	164
	MILPF results, 4110 MW, 7-15 out.	165
	LILPF results, 4110 MW, 9-11 out.	166
	MILPH results, 4110 mW, 11-13 out.	167
	reput vo, 4-10 MW, 11-13 out.	168

C. ~	A CONTRACTOR AND	Page
5.2	out.	169
5.2	S and alone of this and withik	
	solutions per outage.	170
6.1	Performance indices for different techniques.	173
5.2	Relative improvement of solution accuracy.	175
6.3	Thermal power stations in the Northern Egypt	
	system.	181
6.4	The effect of the number of the internal	
	loops of P and Q.	183
6.5	The effect of the convergence tolerance.	184
6.6	Results of ILPF technique with 2 P and 1 Q	107
	iterations.	185
6.7	Results of ILPF technique with 3 P and 2 Q	107
	iterations.	186
6.8	Results of MILPF technique with 2 P and 1 Q	100
	iterations.	189
6.9	Results of MILPF technique with 3 P and 2 Q	ر ن.
	iterations.	190
6.10	Relative improvement of solution accuracy	130
	of ILPF and LILPF (2 P - 1 Q).	707
6.11	Relative improvement of solution accuracy	191
	of lLPF and mILPF (3 P - 2 Q).	100
6.12	Average execution time (ILPF & mILPF) per	192
	outage.	3.0.4
		194