# ON THE COLD SEASON SQUALLS OVER NORTH EGYPT AND THEIR IMPACT ON DESERT DEVELOPMENT

BY

MOHAMED MAHMOUD EISSA

**THESIS** 

Submitted in Partial Fulfillment

of

the Requirements for the Degree of

**DOCTOR OF PHILOSOPHY** 

132.16 7.M

**OF** 

ua969

ENVIRONMENTAL AGRICULTURE SCIENCE

TO

# INSTITUTE OF ENVIRONMENTAL STUDIES AND RESEARCH AIN-SHAMS UNIVERSITY

1994

## ON THE COLD SEASON SQUALLS OVER NORTH EGYPT AND THEIR IMPACT ON DESERT DEVELOPMENT

#### BY

#### MOHAMED MAHMOUD EISSA

B.Sc Sciences (Math.) Cairo University, 1975
Diploma of Meteorology, Cairo University, 1980
Diploma of Agrometeorology, Italy, 1989
M.Sc. of Environmental Agriculture, Ain-Shams University, 1992

Under the supervision of:

Prof. Dr. A. M. El-HAMMADY

Prof. of Pomology, Fac. of Agric., Ain Shams University

Dr. A. F. ABOU-HADID

Associate Professor of Vegetable Crops, Fac. of Agric., Ain Shams University

Dr. H. M. ZOHDY

Chairman of Egyptian Meteorological Authority.

#### **ABSTRACT**

Climatological study is carried out to determine the periods of occurrence of squalls that affect different districts of North Egypt, their frequency of occurrence ratio, mean, the highest and lowest values of their associated weather elements. Two Agrometeorological case-studies are presented to show the effect of squalls on chilling requirements on deciduous fruit trees and on microclimate under plastichouses.

Key words: Squalls, Climatology, Agrometeorology, Microclimatology.



#### **Approval Sheet**

### ON THE COLD SEASON SQUALLS OVER NORTH EGYPT AND THEIR IMPACT ON DESERT DEVELOPMENT

#### BY

#### MOHAMED MAHMOUD EISSA

B.Sc Sciences(Math.), Cairo University, 1975
Diploma of Meteorology, Cairo University, 1980
Diploma of Agrometeorology, Italy, 1989
M.Sc. of Environmental Agriculture, Ain-Shams University, 1992

This thesis for Ph.D. degree has been approved by:

Prof. Dr. ABD EL-RAHIM SHARAF
Prof. of Vegetable Crops, Chairman of Horticulture
Department, Ain Shams University.

Prof. Dr. M. MAGDY ABD EL-WAHAB .....wahale....
Prof. of meteorology, Sciences Faculty, Cairo University.

Prof. Dr. ABD EL-AZIM EL-HAMMADY

Prof. of Pomology, Ain Shams University.

Date of examination: 24 / 8 /1994

#### **ACKNOWLEDGMENT**

I would like to express the deepest sense and gratitude to Prof. Dr. Abd El-Azime Mohamed El-Hammady, Prof. of Pomology, Fac. of Agric., Ain Shams Univ., Prof. Dr. Ayman Farid Abou-Hadid, Assoc. Prof. of vegetable crops, Fac. of Agric., Ain Shams Univ. and to Prof. Hussien Mohamed Zohdy, chairman vicar of Egyptian Meteorological Authority for their supervision, suggesting the current study and continuous guidance.

I would be honored to convey my deepest thanks and true gratitude to Prof. Dr. Adel S. El-Beltagy for his help in this work.

Thanks are also due to Prof. Dr. M.M. El-Zayat and Prof. Dr. H. El-Eter for their help in the planning of this study.

Thanks are also due to Mr. Naaim Abdo Salem chairman of Egyptian Meteorological Authority, Mr. Adel Mohamed El-Samnoudy and Dr. Ahmed Mahmoud Eissa for their help in this study.

Great thanks to colleagues in arid land laboratory. Lastly, my deep thanks to all members of Egyptian Meteorological Authority, my parents and my family.

# **Contents**

| 1     | Introduction                               | (1)  |
|-------|--------------------------------------------|------|
| 2     | Review of literature                       | (3)  |
|       | (2-1) Climatatological review              | (3)  |
|       | (2-1-1) Climate of Mediterranean           | (3)  |
|       | (2-1-2) Climate of Egypt                   | (7)  |
|       | (2-2) Agrometeorological case study        | (12) |
|       | (2-2-1) Chilling                           | (13) |
|       | (2-2-1-1) Chilling hour systems.           | (13) |
|       | (2-2-1-2) Chilling unit systems            | (14) |
|       | (2-2-1-3) Chilling systems under mi        | ld   |
|       | winter conditions                          | (16) |
|       | (2-2-2) Heat requirement                   | (16) |
|       | (2-3) Microclimatilogyical case study      | (27) |
| <br>3 | Material and methods                       |      |
|       | (3-1) Mathematically definition of squall. | (33) |
|       | (3-2) Collection of meteorological data    | (34) |
|       | (3-3) Climatological study                 | (35) |
|       | (3-4) Agrometeorological study             | (35) |
|       | (3-4-1) Chilling requirement               | (35) |
|       | (3-4-2) Heat requirement                   | (36) |

## (3-4-3) E. method for time distribution in

| hours for temperature occarence.             | .( 37) |
|----------------------------------------------|--------|
| (3-5) Microclimatilogyical case study        | (37)   |
| Climatological squalls study                 | (40)   |
| Squalls on West North Coast district         | (42)   |
| Squalls on Delta district                    | (43)   |
| Squalls on Canal El Suez district            | (44)   |
| Squalls on Sinai district                    | (45)   |
| Squalls on Middle Egypt district             | (46)   |
| Impact of some squall hazards on Environment | (47)   |
| Meteosat images of some squalls              | (50)   |
| Agrometeorological case study                | (77)   |
| Results                                      | (78)   |
| (5-1) Chilling requirement                   | (78)   |
| (5-2) Heat requirement                       | (84)   |
| Microclimatelogical case study               | (91)   |
| Summary                                      | (105)  |
| Refrances                                    | (110)  |
| Appendix                                     | (123)  |
| Arabic cummary                               | (201)  |

# List of Tables

|                   |                                                     | page |
|-------------------|-----------------------------------------------------|------|
| Table (1)         | El Salloum squalls report                           | 55   |
| Table (2)         | Matrouh squalls report                              | 56   |
| Table (3)         | Alexandria squalls report                           | 57   |
| Table (4)         | Domiata squalls report                              | 58   |
| Table (5)         | Port Said squalls report                            | 59   |
| Table (6)         | El Arish squalls report                             | 60   |
| Table (7)         | Tanta squalls report                                | 61   |
| Table (8)         | Cairo squalls report                                | 62   |
| Table (6-1)       | Time dist. hours of temp. inside and outside        |      |
|                   | plastichouse at day time                            | 98   |
| Table (6-2)       | Time distribution hours of temp. inside and outside |      |
|                   | plastichouse at night                               | 98   |
| Appendix          |                                                     |      |
| Table (9)         | comparison between chilling units and chilling      |      |
|                   | hours in Egypt for mild winter                      | 123  |
| Table (10)        | comparison between chilling units and chilling      |      |
|                   | hours for severs winter                             | 126  |
| <b>Table</b> (11) | Accumulation of chilling units and chilling         |      |
|                   | hours of Egypt for mild winter                      | 129  |
| Table (12)        | Accumulation of chilling units and chilling         |      |
|                   | hours for severs winter                             | 132  |
| Table (13)        | Degree days with thershd temperature (4. 4°)        | 133  |
| Table (14)        | An example to calculate chilling units according    |      |
|                   | to Shaltout model from time distribution hours      |      |
|                   | of temp, in mild winter                             | 135  |

| <b>Table (15)</b> | An example to calculate chilling units according   |     |
|-------------------|----------------------------------------------------|-----|
|                   | to Shaltout model from time distribution hours     |     |
|                   | of temp. in severe winter                          | 136 |
| Table (MN)        | Time dist. hours of temp. in mild winter for Nov   | 137 |
| Table (MD)        | Time dist. hours of temp. in mild winter for Dec   | 143 |
| Table (MJ)        | Time dist. hours of temp. in mild winter for Jan   | 149 |
| Table (MF)        | Time dist. of temp. in mild winter for Ferb        | 155 |
| Table (MM)        | Time dist. hours of temp. in mild winter for Mar   | 161 |
| Table (SN)        | Time dist. hours of temp. in severe winter for Nov | 167 |
| Table (SD)        | Time dist. hours of temp. in severe winter for Dec | 173 |
| Table (SJ)        | Time dist. hours of temp. in severe winter for Jan | 179 |
| Table(SF)         | Time dist. hours of temp. in severe winter for Feb | 185 |
| Table(SM)         | Time dist. hours of temp. in severe winter forMar  | 191 |

# List of figures

|                                                                     | page |
|---------------------------------------------------------------------|------|
| Figure (3-1) Flow chart of the first assembler program to determine |      |
| the beginning date of squall and its assurance time.                | 39   |
| Meteosat image (1) El Saliba squall during 17 October 1988          | 63   |
| Meteosat image (2) El Saliba squall during 18 October 1988          | 63   |
| Meteosat image (3) El Saliba squall during 19 October 1991          | 64   |
| Meteosat image (4) El Saliba squall during 20 October 1991          | 64   |
| Meteosat image (5) El Saliba squall during 21 October 1991          | 65   |
| Meteosat image (6) El Saliba squall during 22 October 1991          | 65   |
| Meteosat image (7) El Saliba squall during 23 October 1991          | 66   |
| Meteosat image (8) Ghasil El Balah squall during 1 November 1990    | 66   |
| Meteosat image (9) Ghasil El Balah squall during 2 November 1990    | 67   |
| Meteosat image (10) Baqui Ghasil El Balah squall during 6 Nov. 1989 | 67   |
| Meteosat image (11) Baqui Ghasil El Balah squall during 7 Nov. 1989 | 68   |
| Meteosat image (12) Baqui El Maknasa squall during 17 Nov. 1991     | 68   |
| Meteosat image (13) illegal squall during 11 October 1991           | 69   |
| Meteosat image (14) illegal squall during 12 October 1991           | 69   |
| Meteosat image (15) Ras El Sana squall during 2 Jan. 1989           | 70   |
| Meteosat image (16) El Fida El Kabira squall during 8 Jan. 1985     | 70   |
| Meteosat image (17) El Fida El Kabira squall during 9 Jan. 1985     | 71   |
| Meteosat image (18) El Ghotas squall during 16 Jan. 1991            | 71   |
| Meteosat image (19) El Karam squall during 21 Jan. 1989             | 72   |
| Meteosat image (20) Baqui El Karam squall during 8 Feb. 1986        | 72   |
| Meteosat image (21) Baqui El Karam squall during 3 Feb. 1991        | 73   |
| Meteosat image (22) El Salloum squall during 1 March 1990           | 73   |
| Meteosat image (23) El Hosoum squall during 12 March 1990           | 74   |
| Meteosat image (24) El Shams El Kabira squall during 20 Mar. 1985   | 74   |
| Meteosat image (25) First spring squall during 8 April 1988         | 75   |

| Meteosat image (26) Second spring squall during 15 April 1985        | 75  |
|----------------------------------------------------------------------|-----|
| Meteosat image (27) Third spring squall during 8 May 1985            | 76  |
| Meteosat image (28) Third spring squall during 9 May 1988            | 76  |
| Chart (1) Analysis chart of accumulation chilling units according to |     |
| Utah model from November to January for mild winter.                 | 85  |
| Chart (2) Analysis chart of accumulation chilling units according to |     |
| Utha model from November to January for severe winter.               | 86  |
| Chart (3) Analysis chart of accumulation chilling units according to |     |
| Utha model from November to March for mild winter.                   | 87  |
| Chart (4) Analysis chart of accumulation chilling units according to |     |
| Utha model from November to March for severe winter.                 | 88  |
| Chart (5) Analysis chart of accumulation chilling hours less than    |     |
| 7.2 °C from November to March for severe winter.                     | 89  |
| Chart (6) Analysis chart of accumulation chilling hours less than    |     |
| 7.2 °C from November to March for mild winter.                       | 90  |
| Figure (1): Daily regime temperature inside and outside plastichouse |     |
| during Ras El Sana squall in severe winter                           | 99  |
| Figure (2): Daily regime temperature inside and outside plastichouse |     |
| during Ras El Sana squall in mild winter                             | 99  |
| Figure (3): Daily regime relative humidity inside and outside        |     |
| plastichouse during Ras El Sana squall in severe winter              | 99  |
| Figure (4): Daily regime relative humidity inside and outside        |     |
| plastichouse during Ras El Sana squall in mild winter                | 99  |
| Figure (5): Daily regime temperature inside and outside              |     |
| plastichouse during stable days in severe winter                     | 100 |
| Figure (6): Daily regime temperature inside and outside              |     |
| plastichouse during stable days in mild winter                       | 100 |
| Figure (7): Daily regime relative humidity inside and outside        |     |
| plastichouse during stable days in severe winter                     | 100 |

| Figure (8): Daily regime relative humidity inside and outside  |     |
|----------------------------------------------------------------|-----|
| plastichouse during stable days in mild winter                 | 100 |
| Figure (9): Daily regime temperature inside and outside        |     |
| plastichouse during the period 22 to 31 December 1991          | 101 |
| Figure (10): Daily regime temperature inside and outside       |     |
| plastichouse during the period 1 to 10 January 1992            | 101 |
| Figure (11): Daily regime temperature inside and outside       |     |
| plastichouse during the period 11 to 20 January 1992           | 101 |
| Figure (12): Daily regime temperature inside and outside       |     |
| plastichouse during the period 21 to 31 January 1992           | 101 |
| Figure (13): Daily regime temperature inside and outside       |     |
| plastichouse during the period 1 to 17 February 1992           | 102 |
| Figure (14): Daily regime temperature inside and outside       |     |
| plastichouse during the period 1 to 30 December 1992           | 102 |
| Figure (15): Daily regime temperature inside and outside       |     |
| plastichouse during the period 1 to 31 January 1993            | 102 |
| Figure (16): Daily regime temperature inside and outside       |     |
| plastichouse during the period 1 to 28 February 1993           | 102 |
| Figure (17): Daily regime temperature inside and outside       |     |
| plastichouse during the period 1 to 31 March 1993              | 103 |
| Figure (18): Daily regime relative humidity inside and outside |     |
| plastichouse during the period 11 to 20 January 1992           | 103 |
| Figure (19): Daily regime relative humidity inside and outside |     |
| plastichouse during the period 21 to 31 January 1992           | 103 |
| Figure (20): Daily regime relative humidity inside and outside |     |
| plastichouse during the period 1 to 17 February 1992           | 103 |
| Figure (21): Daily regime relative humidity inside and outside |     |
| plastichouse during the period 1 to 10 December 1992           | 104 |

| Figure (22): Daily regime relative humidity inside and outside |     |
|----------------------------------------------------------------|-----|
| plastichouse during the period 11 to 20 December 1992          | 104 |
| Figure (23): Daily regime relative humidity inside and outside |     |
| plastichouse during the period 21 to 31 December 1992          | 104 |

# Introduction

# 1- Introduction

Most of the previous studies on squalls are merly fragmentary and of descriptive nature. They are merely records of their occurrence over Alexandria. These studies have been carried out for the interest of populace such farmers interest in El Khamasin winds on the fruit orchards which causes the droping of flowers and small fruits from the trees. Usually, farmers prepare for the summer agriculture before or after El hessoom squall to avoid its serious effects on seediness.

Needless to say that the previous studies in this field are based upon witnesses and observations which can in general form the data for any statistical approach. Before starting this work, it was found useful to communicate with the parties interested in this study to collect the data and information of the impact of cold squalls on their different fields. There are examples of the severe effect of squalls on Marine activities, Agriculture crops, Plant Epidemic outbreak, Flash Floods, Protected cultivation and the Chilling requirement of Deciduous fruit trees, .... etc. Baqui El Karm squall that occurred on 3 February 1992 caused much damages to protected cultivation by tearing the plastic covers of greenhouses and tunnels. Some small fish vessels were smashed by heavy sea and many sailors were killed as a result. The weather conditions during the squalls may cause plant epidemic outbreak like potato-Late Blight caused by the fungus Phytophthora infestation. The subsequent sporogensis are all subject to strong climatic controls. For sporogenesis high air humidity is required, and