Value Of The Thoracic Ultrasound In The Assessment Of Malignant Pleural Effusion.

Thesis

submitted for partial fulfillment of the master degree in Chest Diseases

by

AHMED ADEL IBRAHIM

M.B.B.Ch.

Supervised by

Prof.Dr. MOHAMED ALI FARRAG

Professor of Chest Diseases Faculty of Medicine Ain Shams University

Dr. NERMINE MOUNIR RIAD

Assistant Professor of Chest Diseases Faculty of Medicine Ain Shams University

Chest Department Faculty of Medicine

Ain Shams University

2014

Acknowledgment

In the name of Allah, most gracious, most merciful.

First of all I would like to thank **Allah** who enabled me to finish this research.

I am deeply indebted to my supervisor; Professor **Mohamed Farrag**; Professor of Chest diseases, Ain Shams University whose guidance and instructions were invaluable.

I would like to express my gratitude to Professor **Nermine Mounir**; Assistant Professor of Chest Diseases, Ain Shams University

for her help & patience all through the time of the research.

I would extend my thanks to the sonographers; Dr. Hesham El-Zobair and Dr. Hanaa Fayez for their help & support all through the time of the research.

I am very grateful to the pathologist; Dr.**Sahar El-Sayed** for her co-operation and support.

I forward my appreciation to all the staff of **Abassia Chest Hospital**; doctors and nurses for their tremendous efforts to help
me to finish this research.

Finally, I would like to thank all my family for their support, help and love.

List of Contents

<u>Title</u>	Pages
Acknowledgement	I
Table of contents	II
List of tables	IV
List of figures	VI
Abbreviations	IX
Introduction	1
Aim of the work	3
Review of literature	4
 Ultrasonography 	4
Ultrasound Terminology	20
Pleural Anatomy	35
 Pleural effusion 	51
Peural thickening	66
Pleural tumors	72
 Peumothorax 	83
Ultrasound Guided Invasive Procedures	88
Ultrasound by Non-Radiologist	113

Patients and Methods	
	123
Results	137
Discussion	159
Summary	176
Conclusions	180
Recommendations	181
References	182
Arabic summary	-

List of Tables

<u>Table</u>	<u>Title</u>	<u>Pages</u>
<u>No.</u>		
1	Different causes of pleural effusion	51
2	International TNM Classification for Malignant Pleural Mesothelioma	78
3	Sex and Age Distribution	137
4	ESR and TLC difference between malignant and benign effusions	139
5	Pleural fluid chemical analysis of Pleural Effusions	141
6	Pleural fluid cytology and type of biopsy	143
7	Chest US findinds of pleural effusion	145
8	Chest CT findings of pleural effusion	148
9	Pleural fluid ADA, Tuberculin test	149

	and sputum examination of T.B.	
	effusion	
10	Comparison between US and Chest	151
	CT as regard size of effusion	
11	Comparison between ultrasound and	152
	X-ray as regards detection of fibrin	
	strands	
12	Comparison between ultrasound and	153
	X-ray as regards detection of	
	loculation	
13	Comparison between ultrasound and	154
	X-ray as regards detection of pleural	
	thickening	
14	Comparison between ultrasound and	155
	CT scan as regards detection of lung	
	collapse	
15	Comparison between ultrasound and	156
	X-ray as regards detection of pleural	
	effusion	
16	Performance characteristics of chest	157
	US in comparison with chest CT	
17	Agreement between chest US and	158
	CT results	

List of Figures

Fig. No.	<u>Title</u>	<u>Pages</u>
1	Acoustic impedence of different materials	8
2	Range of reflected intensities from different parts of human body	9
3	Degrees of attenuation of ultrasound beams as a function of the wave frequency in different body tissues	10
4	The time gain control panel	13
5	Various ultrasound probes	15
6	Different tupes of tranducers	17
7	Trnsducer orientation of different positions	19
8	A lines	21
9	B lines	22

10	Bat sign	25
11	Seashore sign in M-mode ultrasound	27
12	Stratosphere sign in M-mode ultrasound	28
13	Sonogram showing lung point	29
14	Normal thoracic ultrasound	33
15	Visceral pleura	37
16	Surafce anatomy of lung and pleura	39
17	Diagram showing the innervation of the parietal and visceral layers of pleura	46
18	Normal sonographic appearance of the pleural line	49
19	Trans-hepatic ultrasound examination.Lung is indicated as a mirror artifact above the diaphragm	50
20	Sinusoid sign on M-mode	54
21	V line sign	56
22	Hematocrit sign and Plankton sign	58
23	Various causes of empyema	61
24	Color Doppler sign	63
25	Thoracostomy tube appearance by	65

	US	
26	Ultrasound images of pleural thickening	67
27	Localized pleural thickening in a patient with postinflammatory pleural fibrosis showing negative color Doppler sign	69
28	Mechanism of formation of round atlectasis	71
29	Pleural tumour with large pleural effusion	75
30	Malignan mesothelioma	77
31	Chest x-ray shows right sided massive pleural effusion and chest ultrasonography image shows massive pleural effusion including echogenic masses	81
32	Intercostal sonogram shows prominent hypoechoic nodular masses adjacent to the diaphragmatic pleura	81
33	Diaphragmatic pleural metastases with large pleural effusion	82
34	Flowchart for diagnosing pneumothorax	84

35	Ultrasound examination of pneumothorax on a single site of both sides of the upper chest	85
36	The probe is moved to the lateral areas looking for lung point in case of lack of sliding and B lines in the anterior chest. Corresponding CT scan showing right sided pneumothorax	86
37	Guidewire can be visualized easily as it appears as echogenic line	93
38	Measurement of The distances (depth) have been marked for subsequent core biopsy from an echoic lesion	96
39	Thoracostomy tube M-mode images with the low-frequency transducer	99
40	Multiloculated fibrinous adhesions as seen at thoracoscopy, and the ultrasound correlate	105
41	Steps of medical thoracoscopy procedure	107
42	Thoracic ultrasound training competency assessment sheet	120
43	Anechoic pleural effusion	128

44	Complex non-septated pleural effusion	128
45	Multiloculated pleural effusion	129
46	Echoic pleural effusion	129
47	Minimal pleural effusion as seen by linear transducer	130
48	Small amount pleural effusion	130
49	Moderate amount pleural effusion	131
50	Massive pleural effusion	131
51	Diagnostic thoracocentesis	132
52	Age and sex distribution	138
53	ESR difference between studied groups of effusion	140
54	Pleural protein level difference between studied groups of effusion	142
55	Pleural LDH level difference between studied groups of effusion	142
56	Final diagnosis of malignant effusion group of patient	144
57	Final diagnosis of non malignant effusion	144

List of Abbreviations

2D Two Dimentional

ADA Adenosine Deaminase

B-mode Brightness mode

cc Cubic centimeter

CECT Contrast Enhanced Computed Tomography

cm Centimeter

COPD Chronic Obstructive Pulmonary Disease

CT Computed Tomography

CXR Chest X-ray

ESR Erythrocyte Sedimentation Rate

EUS- Endoscopic Ultrasound with Fine Needle

FNA Aspiration

FNA Fine Needle Aspiration

ICU Intensive Care Unit

IMT Inflammatory Myofibroblastic Tumor

kHz Kilohertz

LDH Lactate Dehydrogenase

MDCT Multi-Detector Computed Tomography

m/s Meter per Second

MHz Megahertz

ml Milliliter

mm Millimeter

M-mode, Motion mode

MRI Magnetic Resonance Imaging

MT Medical thoracoscopy

n Number

No Number

NPV Negative Predictive Value

PPV Positive Predictive Value

SD Standard Deviation

sec Second

SPSS Statistical Package for the Social Sciences

TUS Thoracic Ultrasound

UK United Kingdom

US Ultrasound

VTSA Video Assisted Thoracoscopic Surgery

Vs Versus

Introduction

A pleural effusion is an abnormal collection of fluid in the pleural space resulting from excess fluid production or decreased absorption (*Diaz-Guzman and Dweik*, 2007).

Pleural effusion is a highly common clinical presentation in malignant and benign diseases. The differential diagnosis is broad and includes heart failure, parapneumonic effusion, empyema, pulmonary emboli, inflammatory disease and malignancies (*Daniels and Ryu*, 2011).

The tests most commonly used to diagnose and evaluate pleural effusion include: Chest x-ray, Computed tomography (CT) scan of the chest, Ultrasound of the chest (US), Thoracentesis and pleural fluid analysis. When the pleural effusion has remained undiagnosed despite previous less-invasive tests, thoracoscopy may be performed (National Cancer Institute, 2006).

Transthoracic ultrasound has received increased interest from chest physicians in recent years as it has the advantages of bedside availability, absence of radiation, and guided aspiration of fluid-filled areas and solid tumors (*Beckh et al.*, 2002).