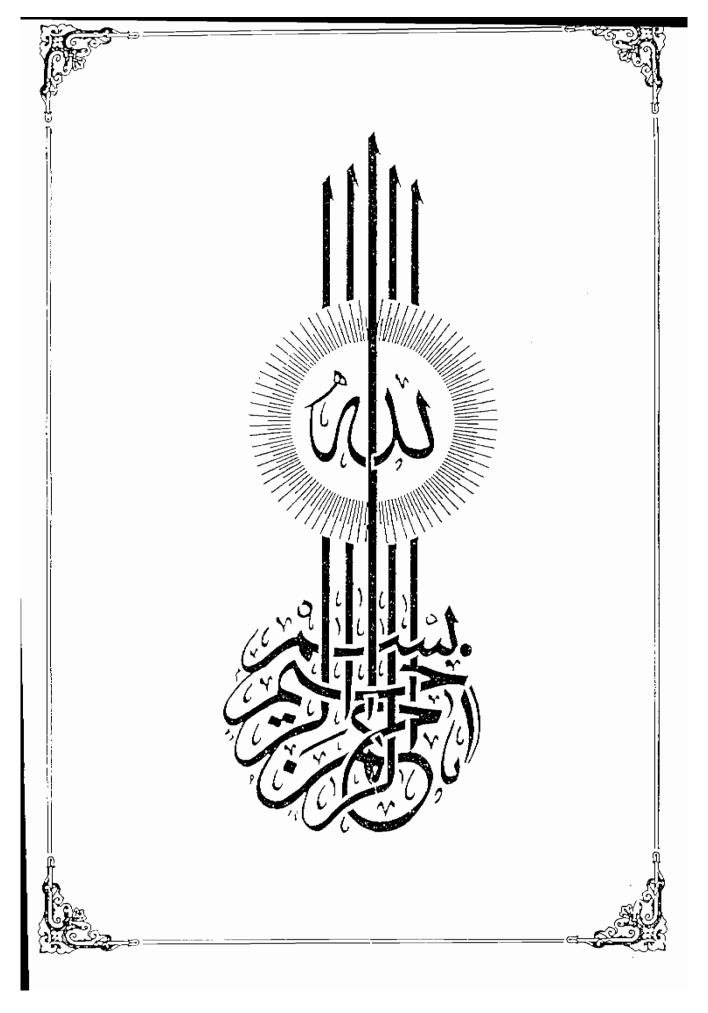
Accumulation of heavy metals by some aquatic macrophyta as an indicator of pollution (Ward El-Nile)

By

RADWAN MOHAMED RADWAN

B.Sc. Faculty of Agric., Zagazeg Univ. (1976) High Diploma (Soil Science), Al-Azhar Univ., (1983)

THESIS


Submitted in Partial Fulfillment of the Requirements For The Degree of MASTER OF SCIENCE.

IN

ENVIRONMENTAL SCIENCES (SOIL SCIENCE)

Department of Agricultural Sciences
Institute of Environmental Studies & Research
Ain Shams University

1993

APPROVAL SHEET

ACCUMULATION OF HEAVY METALS BY SOME AQUATIC MACROPHYTA AS AN INDICATOR OF POLLUTION (WARD EL- NILE)

Ву

Radwan Mohamed Radwan

B.Sc. Facultuy of Agric., Zagazeg Univ. (1976)

This thesis for M.Sc. degree has been approved by

Prof. Dr. A.S. Ismail

D.S. Ismal

Professor of Soil Science, Fac. of Agric., Ain-Shams Univ. (Supervisor).

Prof. Dr. A. F. El-Kholi

6 Akol-

Professor of Soil and Plant Nutrition, Atomic Energy Authority

Prof. Dr. M. Talba

Professor of Soil physics, Fac. of Agric., Ain-Shams Univ.

ACKNOWLEDGEMENT

The author wishes to express his deepest gratitude and sincere thanks to Prof. Dr. Abdel-Samad Salem Ismail, Soils Dept., Fac. of Agric., Ain Shams Univ., for his supervision and guidance throughout the course of this work. Thanks are also due to Prof. Dr. Mohamed El-Ashary. Head of Animal production, Department, Ain Shams University, for his continuous supervision.

The continuous help, supervision, encouragement and fruitful discussions shared with Dr. Mamdouh Fathi Abdel-Sabour Associate Prof., Soil & Water pollution unit, Soil & Water Dept., Nuclear Res. Center, are greatly appreciated.

The author is greately indebted to the members of Soil & Water Dept., Nuclear Res. Center, for their helps during the experimental work of this thesis.

CONTENTS

MU.	MONDEDGEMEN I S	Paye
1 -	INTRODUCTION	. 1
2-	REVIEW OF LITERATURE	. 3
	2.1 Description of water hyacinth plant	. 3
	2.2 Historical	. 3
	2.3 Chemical constituents of water hyacinth	. 5
	2.4 Water hyacinth utilization	. 7
	2.4.1 Utilization of water hyacinth for animal feed	7
	2.4.2 Utilization of water hyacinth as compost fertilizer	9
	2.4.3 Utilization of water hyacinth for pollution control	12
	2.5 Biological indicators	13
	2.5.1 Selection of indicators	14
	2.5.2 Factor affecting indicator reliability	16
	2.6 Macrophytes	18
	2.6.1 Individuals and population as indicators	19
	2.6.2 Water-hyacinth (Eichhirina - cassipes)	19
3-	MATERIALS AND METHODS	21
	3.1 Collection of natural samples	21
	3.2 Lysimeter experiments	
	3.3 Analytical procedures	25
4-	RESULTS AND DISCUSSIONS	26
	4.1 Collection of natural samples	
	4.1.1 Industerial waste water	
	4.1.2 Water hyacinth content of Zn, Cu and Pb	
	4.1.3 Water-plant interaction	

4.2	2 Lysimeter Experiments44	
	4.2.1 Effect of zn treatment44	
	4.2.2 Effect of cu treatment50	
	4.2.3. Effect of co treatment55	
5-	SUMMARY62	
-		
6-	REFERENCES69	
	APPENDEX	
A	RABIC SUMMARY.	

List of Tables

		Dan
TA	ble No.	Page
1-	Industrial annual descharge of tested metals to the Nile and Ismailia Canal at selected sites.	30
2-	Some heavy metals content in industrial liquid waste (filterated) And its suspended materials at different selected sites.	33
3-	Average of total uptake of Zn, Cu and Pb in water-hyacinth plant at different locations.	37
4-	Average concentation in suspended and water in different studied locations.	41
5-	Average of biological accumilation and concentration factors in different studied locations.	42
6-	Water- hyacinth dry matter, Zn concentration Zn uptake (Shoot / root) ratio, tolerance index (Ti) and transfer factor (Tc).	45
7-	Water- hyacinth dry matter, Cu concentration Cu uptake (Shoot /root) ratio, tolerance index (Ti) and transfer factor (Tc).	51
8-	Water -hyacinth dry matter, Co concentration Co uptake (Shoot /root) ratio, tolerance index (Ti) and transfer factor (Tc)	56

LIST OF FIGURES

Figures No. P	age
1- Sketch of water and water hyacinth sampling	
locations	23
2- Annual element discharge of wastewater of selected	
factories	31
3- Effect of different zn rates on the dry weight of	
shoots and roots of water hyacinth plants	46
4- Effect of zn cocentration in growth media on water	
hyacinth zn content	48
5- Effect of cu levels in the growth media on	
hyacinth dry weight	52
6- Effect of cu levels in the growth media on hyacinth	
cu content	54
7- Effect of co levels in the growth media on hyacinth	
dry weight	57
8- Effect of co levels in the growth media on hyacinth	
co content	59

Appindex

- Appindex (1). Average of dry matter content, zn concentration and toal uptake in water hyacinth plan at different locations.
- Appindex(2). Average of dry matter content, cu concentration and toal uptake in water hyacinth plan at different locations.
- Appindex(3). Average of dry matter content, co concentration and toal uptake in water hyacinth plan at different locations.
- Appindex (4). Average concentration in suspended materials and water-soluble tested meals in different studied location.
- Appindex (5). Average of biological accumulation (BAF) and concentration factor (CF) in different studied location.

INTRODUCTION

I - Introduction

Water hyacinth (Eichhornia crassipes) is considered as one of the worst aquatic weeds which effect the fresh water pathways. Water hyacinth reproduces rapidly if it is left without any effective control. Many attempts have been made to use water hyacinth in different countries. It is recognized as a potential supply of biomass lies in its enormous reproduction capacity.

Water hyacinth have received a great attention during the recent years as possible economic biological system for reducing trace elements from waste water, or for minimizing water pollution as general and hence to improve the water quality. Since, the end products of the degraded organic pollutants are carbon dioxide, ammonia, phosphate and sulphate which are mainly adsorbed by water hyacinth through the roots. It is reported that ponds with water hyacinth are much more effective in the removal of pollutants than conventional treatment processes. However, it is not fully understood the mechanism of heavy metal absorption by the floating hyacinth plant.

Surface water pollution by heavy metals results mainly from industrial waste water and sewage effluent discharged into water bodies as well as land runoff. This problem has recently attracted the attention of the researches in Egypt. Consequently, more

knowledge about the presence of these metals in Egyptian aquatic environment is needed.

The aims of this study are to evaluate the use of water hyacinth plant as a biological indicator for zinc, copper and lead levels and accumulation in the aquatic system. Moreover, to investigate the capability of such plant to be used as a biological indicator for wastewater to minimize its levels of pollutants.

II - REVIEW OF LITERATURE

2.1. Description of water hyacinth plant

Water-hyacinth (Eichhornia-crassipes solms) is one of numerous aquatic plants. It is a large free-floating plant with attractive lavender flower and shiny bright-green leaves on long petioles. The plants are found mainly in ponds and slow flowing streams. They are normally free-floating but, if stranded by receding water, will root in mud and survive. Uncrowded plants, particularly in shallow water and full sunlight, have bulbular float petioles about 8 incheds long, whereas crowded plants produce elongate petioles upto 50 inches long (Penfound and Barle, 1948). They also suggested the following plant size classes: midget, small, medium, large and gaint: The midget being rooted on land, small being in full flower in shallow water, medium existing in still water often profusely flowered, large and gaint size thriving in moving, well-areated water of canals. The latter are distinguished by elongated equitant leaves upto 50 inches long with float leaves being non-existent.

2.2. Historical:

Water-hyacinth (Eichhorina crassipes solms) is one of the most bad weed in the world. It has spread from the American tropics and assumed a largely pan-tropical distribution (Simpson, 1932, Bose, 1945; Parham, 1947; Meadly, 1953; Mendonca, 1958; Allsopp, 1960 and Bock 1969). Percheron (1903) mentioned the cultivation of