الله الرحمن الرحيم

Ain Shams University Faculty of Engineering

Analysis and Development of A Ballistic Missile Control System

By Engineer Elsayed Ismail Elsayed Hasan

A thesis

submitted in partial fulfillment for the Requirements of the degree of Master of Science In Mechanical Engineering

621.8

Supervised by

Prof. Dr. Mohamed Yousef Afifi

Professor of Applied Mechanics

Design and Production Engineering Department Faculty of Engineering- Ain Shams University

Prof. Dr. Faraid Abdel-Aziz Tolba

Professor of Automatic Control

Design and Production Engineering Department
Faculty of Engineering- Ain Shams University

Cairo 1995

Examiners Committee

Name, Title & Affiliation

Signature

- 1- Prof. Dr.: Mohammed A. R. Ghonaimy H.A. Charactery Professor of Computer Systems, Computer and System Engineering Department, Faculty of Engineering, Ain Shams University.
- 2- Gen. Prof. Dr.: Ibrahaim Mansour Ibrahaim
 Professor of Aeronautics,
 Aeronautics Department,
 Military Technical College.

Im

3- Prof. Dr.: Mohammed Yousef Afifi
Professor of Applied Mechanics
Design and Production Engineering Department.
Faculty of Engineering
Ain Shams University (Supervisor)

Date: / /1995

Statement

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Mechanical Engineering.

The work included in this thesis was carried out by the author in the Department of Mechanical Engineering, Ain Shams University, from Dec. 1991 to Dec. 1994.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution.

Date : 15/ 7/ 1995

Signature : Elsayed Ismail

Name : Elsayed Ismail

ACKNOWLEDGMENT

I would like, first of all to express my indebtedness to both **Prof. Dr. Mohamed Yousef Afifi** and **Prof. Dr. Faraid Abdel-Aziz Tolba** Professors of Mechanical Engineering, Ain-Shams University, for opportunity to carry out this work. They are the supervisors of this work. I wish to express my sincere appreciation to them for continuous guidance, encouragement and constructive discussions.

I am especially grateful to my colleagues Mr. T. Badawi, Mr. A. Abdel-Wahed and Mr. O. Gaweish senior systems engineers at ABD company for helpful discussions and comments.

The help given by the colleagues in Systems Engineering Department is very much appreciated for the valuable discussion regarding this work.

El-sayed Ismail, Cairo, 1995.

ABSTRACT

The problem of ballistic missile range accuracy represents the ultimate goal of missile autopilot designers. The errors taking place at any period of the flight time certainly accumulate and finally have a strong impact on the missile range at the end of the Elight. Beside that, the lack of information due to insufficient publications about the autopilot lynamics and channels interaction does not give the chance to the design engineers to diagnose the sources the different errors and then introducing the effective solutions to these problems.

The effective performance of missile autopilot isually is not attained without an existing detailed analysis of the different components of the control system.

The main objective of the thesis is to introduce as much as possible a complete analysis of the missile control system including:

- 1- Missile dynamics represented in the form of nonlinear and linearized mathematical models and their validity.
- 2- Autopilot controller of the main channels (Pitch, yaw, roll and Lateral acceleration).
- 3- Autopilot final control element and its analysis.
- 4- Complete representation of the three main channels and their coupling.
- 5-Analysis and evaluation of the autopilot performance indices in the main channels and the effect of the external disturbances.
- 6- Introducing the effect of coupling between the different channels.

Introducing the previously given points in the thesis, makes it a good candidate for an information bank, which can be consulted by the engineering staff of missile autopilots.

Thesis Summary

The thesis is divided into six chapters and four appendices as follows:

Chapter one represents literature survey.

Chapter two deals with missile dynamics. It includes complete nonlinear and linearized equations of motion of flying object. Thus, the transfer functions of the basic modes of missile motion are attained. Hence, the analysis of every mode is done with respect to control actions and disturbance.

Chapter three is devoted to a detailed analysis of servomechanism dynamics. The analysis is conducted based on a complete linearized model taking into consideration the effect of nonlinearities.

Chapter four deals with analysis of missile autopilot on base of decoupled pitch, yaw, roll and lateral acceleration channels. A representation of autopilot configuration is presented. Hence, the evaluation of the performance indices of the main channels are attained. Also, the effect of external disturbances is introduced.

Chapter five deals with the analysis of control system channels coupling. It presents firstly the coupled mathematical model. The analysis of yaw and coll channels is done again based upon the coupled model of missile dynamics. The comparison between the cesults of both coupled and decoupled models is given.

Chapter six presents the analysis of the results and conclusions.

The presented work is based on the analysis of autopilot dynamics at every second during the missile trajectory of controlled regime. Furthermore, six critical and important cases are selected for detailed analysis of frequency and transient characteristics.

The cases represent the times at which:

- maximum value of angle of attack is occurred
- maximum values of aerodynamic coefficients are attained.
- maximum value of dynamic pressure times angle of attack is occurred
- maximum value of dynamic pressure is occurred.
- maximum static instability is attained.
- at the moment of engine cut-off.

At the end of thesis four appendices are added:

lppendix-A introduces the systems of axes and their transformations.

Appendix-B present the transfer functions of longitudinal dynamics of missile body.

Appendix-C introduces nonlinear perturbed model
)f longitudinal motion.

Appendix-D presents nonlinear model of servomechanism.

CONTENTS

	NOWLEDGMENTI	
	SIS SUMMARY	
	rentsv	
	r of figuresx	
	r of Tables	
IOM	enclatures	V
HAI	PTER ONE: LITERATURE SURVEY	
1	INTRODUCTION	
	LITERATURE SURVEY	
. •		
~UZ	PTER TWO: MISSILE DYNAMICS	
		,
. • T	SCALAR EQUATIONS OF MOTION	
	2.1.1 Equations of Translation Motion	
	2.1.2 Equations of Angular Motion	
2	EXTERNAL FORCES AND MOMENTS	
	2.2.1 Aerodynamic Forces	}
	2.2.2 Thrust Force	0
	2.2.3 Gravitational Force	0
	2.2.4 Pitching Moment	1
	2.2.5 Yawing Moment	
, 2	.6 ROLLING MOMENT	
	CONTROL FORCES AND MOMENTS	
	SYSTEM OF EQUATIONS OF MOTION	
	LINEARIZATION OF EQUATIONS OF MOTION	
	· · · · · · · · · · · · · · · · · · ·	
	2.5.1 Derivatives of Aerodynamic Forces and Moments	
	2.5.2 Derivatives of Control Forces and Moments	
	2.5.3 Linearization of External Forces and Moments	
_	2.5.4 Decoupling of Equations of Motion	
:.6	LONGITUDINAL DYNAMICS	
	2.6.1 Longitudinal Equations Motion	
	2.6.2 Longitudinal Transfer Functions	33
	2.6.3 RESPONSE OF OUTPUT PITCH ANGLE DUE TO PITCH	
	CONTROL SURFACES INPUT	35
	2.6.4 Responses of Pitch Angle due to Disturbances3	37
	2.6.5 Transfer function of ballistic missiles	
2.7	RECOMMENDED APPROXIMATIONS	
•	2.7.1 Transfer Function of Pitch	
	2.7.2 Short Period Approximation	
) Ω	LATERAL DYNAMICS	
0		
	2.8.1 Lateral Equations of Motion	
	2.8.2 Decoupling of Lateral Motion	
	2.8.3 Transfer Function of Roll Mode	
, U	CONCLUSTON	~ (1

CHA	PIER :	THREE:	DYNA	AMICS	OF.	CONTROL	SURFACES	
			SERV	OMECHA	MISMS			
3 1	TOAD	A DOT.				SHEEVCES		62
							N	
3. 3							SM	
	3.3.2	2 Equat	cions (of Spoo	ol Valv	e		66
	3.3.3	3 Gear	Pump (Charact	ceristi	cs		68
3.4							PLIFIER	
							Amplifier	
							ion	
							s	
3.5								
	3.5.3	l Trans	sfer F	unction	n of To	rque Motor		77
	3.5.2	? Trans	sfer F	unctio	n of Ma	gnetic Amp	lifier	78
							plifier	
3.6								
							ristic of	
	J. U. Z							
	2 6 6							0 ∠
	3.6.3	Time	. Ke	sabouse	3 (haracteris	stic of	0.7
3.7	CONCI	LUSION	· · · · · ·	• • • • •				88
CHAI	PTER 1	FOUR:	ANALY	SIS OF	CONTRO	L SYSTEM		
4 1	DESCE	MATTET S	J OF M	TSSTLE	COMTRO	PMATENS I		an
4 . 4								
							1 al T	
							h Channel	
							tch Channel	
	4.2.4						of Pitch	
	4.2.5	Respo	onse o	f Pitch	n Chann	el due to	Disturbance:	s107
4.3								
							Channel	
							w Channel	
							Yaw channel	
							sturbances .	
4.4								
							Channel	
							oll Channel .	
							Roll Channe.	
							isturbances	
					CILCULING	it auc to t	TREATMANCER	

	4.5.1 Dynamics of Pendulous Integrating Gyro	
	Accelerometer	
	4.5.2 Dynamics of Lateral Acceleration Channel	
	Controller	
	4.5.3 Open Loop Characteristics Lateral	
, , _	Acceleration Channel	139
i. 6	CONCLUSION	142
HAI	PTER FIVE: ANALYSIS OF CHANNELS COUPLING	
. 4	NON OTHOUGH TO BOURMIAND OF MORTON	1 4 4
	NON-SINGULAR EQUATIONS OF MOTION	
	NON-SINGULAR EQUATIONS OF MOTION	
5.2	LINEARIZATION OF EQUATIONS OF MOTION	146
5.3	LATERAL TRANSFER FUNCTIONS	151
5.4	ANALYSIS OF MAIN CHANNELS WITH COUPLING EFFECT	152
, . .	5.4.1 Analysis of Roll Channel	
	5.4.2 Analysis of Yaw Channel	
; =	ANALYSIS OF MISSILE DYNAMICS COUPLING	
,	5.5.1 Response of Yaw Angle due to Roll Control	
	Surfaces	162
	5.5.2 Response of Roll Angle due to Yaw Control	
	Surfaces	
. ,		
) . 6	ANALYSIS OF CHANNEL COUPLING	
	5.6.1 Response of Yaw Channel due to Roll Input	
	5.6.2 Response of Roll Angle due to Yaw Input	
i. 7	CONCLUSION	171
YZZ 3. 2	PTER SIX: ANALYSIS OF THE RESULTS AND CONCLUSION	
	FIER SIR. ANALISIS OF THE RESULTS AND CONCLUSION	
; . I	ANALYSIS OF THE RESULTS	
	6.1.1 Missile Dynamics	
	6.1.2 Servomechanism Dynamics	
	6.1.3 Main Channels Dynamics	
	6.1.4 Analysis of Channels Coupling	
i.2	CONCLUSION	177
'UTU	JRE WORK	177
EFF	ERENCES	178
PPE	ENDICES	180
LPP1	ENDIX-A: COORDINATE SYSTEMS AND AXES TRANSFORMATION	
	COORDINATE SYSTEMS AND ANGLES DEFINITION	
	AVEC TO ANCEODMATIONS	

	A.2.1 Dire							
	A.2.2 Dire	ction Cos tial Axes.				-	4	
	A.2.3 Dire							
		•••••						
	A.2.4 Dire							
	velo	city Axes						.184
	ENDIX-B: TR							
3.⊥	TRANSFER							105
2 2	TRANSFER	DEFLECTION						
) • Z		FORCE						
3.3	TRANSFER							
		FORCES						
3.4	TRANSFER							
	PITCHING	MOMENT				· · · · · · ·		.188
וממו	E <i>NDIX-C:</i> N	ON_I TNEAD	מוזשמשמ	PED MOD	TT 0T 1	ONCIUM	D TRIAT	
1PP		OTION						189
	1.1	01101					• • • • • •	. 103
	ENDIX-D: N							
).1	EQUATIONS	OF ELECTR	C AMPL	IFIER				.197
).2	EQUATIONS	OF HYDRAUT	TC AMP	TITETER -				.198

LIST OF FIGURES

	HIDI OL LICONED
Chapter	One:
ig.(1.1)	Block diagram of ballistic missile control system4
Thapter	Two:
ig.(2.1)	Sign convention of vanes motion13
ig.(2.2)	Dynamic coefficients of equation of longitudinal
	acceleration29
ig.(2.3)	Dynamic coefficients of equation of pitch angular
	acceleration30
ig.(2.4)	Dynamic coefficients of equation of angular velocity of
	flight path angle
	Parameters of short period of pitch angle41
'ig.(2.6)	Parameters of long period of pitch angle42
ig.(2.7)	Characteristics of pitch transfer function of V-2
	missile43
=	Bode Diagram of pitch angle at different flight times 44
=	Time constant of long period47
ig.(2.10)	Bode diagram of short period approximation transfer
	function50
	Parameters of roll mode Vs flight time57
ig.(2.12)	Bode plot of roll transfer function at different flight
	times58
ig.(2.13)	Gain of rolling moment59
Chapter	Three:
ig.(3.1)	Thrust vector control using four moving vanes62
=	Schematic drawing of servomechanism65
-	Area of orifice67
-	Represents block diagram of the hydraulic amplifier72
ig.(3.5)	Amplitude plot of hydraulic amplifier at maximum loading
	case74
_	Harmonic linerization of dry friction moment
ig.(3.7)	Block diagram of torque motor
ig.(3.8)	Block diagram of electric amplifier79
ig.(3.9)	Frequency response of electric amplifier80
	Schematic Diagram of feedback mechanism
	Simplified block diagram of servo mechanism82
ig.(3.12)	
	Amplitude plot of open loop84
	Frequency response of closed loop85 Transient response of servomechanism 86

Thapter Four:

'ig.(4.1) Block diagram of control system92	
ig.(4.2) Block diagram of pitch channel93	
'ig.(4.3) Schematic diagram of controller94	
'ig.(4.4) Bode plot of pitch controller96	
'ig.(4.5) Time response of pitch controller97	
'ig.(4.6) Bode plot of pitch open loop99	
ig.(4.7) Gain and phase margins Vs flight time10	o
'ig.(4.8) Parameters of closed loop of pitch channel Vs flight	
time10	2
'ig.(4.9) Time constants of low frequencies of pitch channel	
closed loop10	2
'ig.(4.10) Bode plot of closed loop of pitch channel10	4
'ig.(4.11) Bandwidth and cut-off frequency Vs flight time10	5
'ig.(4.12) Time response of closed loop of pitch channel10	5
'ig.(4.13) Steady state error Vs flight time10	6
ig.(4.14) Maximum overshoot Vs flight time10	6
ig.(4.15) Delay and Rise time Vs flight time10	7
ig.(4.16) Bode plot of pitch angle due to unit change in axial	
force11	0
ig.(4.17) Bode plot of pitch angle due to unit change in normal	
force11	1
ig.(4.18) Bode plot of pitch angle due to unit change in Pitching	
moment11	1
ig.(4.19) Time response of pitch angle due to unit disturbance of	
axial force11	2
ig.(4.20) Time response of pitch angle due to unit disturbance of	
normal force11	2
ig.(4.21) Time response of pitch angle due to unit disturbance in	
pitching moment11	2
ig.(4.22) Block diagram of yaw channel11	3
ig.(4.23) Bode plot of open loop of yaw channel11	5
ig.(4.24) Gain margin Vs flight time11	6
ig.(4.25) Phase margin Vs flight time11	б
ig.(4.26) Main parameters of yaw closed loop Vs flight time11	7
ig.(4.27) Frequency response of closed loop of yaw channel11	8
ig.(4.28)Bandwidth and cut-off frequencies of yaw channel11	9
ig.(4.29) Time response of yaw channel12	0
ig.(4.30) Overshoot Vs flight time12	1
ig.(4.31) Delay time and Rise time Vs flight time	