ASSESSMENT OF LEFT VENTRICULAR FUNCTION IN VENTRICULAR SEPTAL DEFECT BY ECHOCARDIOGRAPHY

Thesis

Submitted in Partial Fulfilment of the

Master Degree in

Paediatrics

By

Amel Abdel Magied El-FARAMAWY

(M.B., B.Ch.)

618.9212 A.A

Under the Supervision of

Prof. Dr. Sowsan Amin El Sokkary

Professor and Head of Paediatric Cardiology Department Ain Shams University

48553

Dr. Tawhida Yassin Abdel Gaffar

Lecturer in Paediatrics Ain Shams University

Faculty of Medicine
Ain Shams University
1993

ACKNOWLEDGEMENT

I would like to express my deep gratitude and appreciation to *Prof. Dr. Sowsan El-Sokkary*, Professor of Paediatrics, Faculty of Medicine, Ain Shams University, for granting me the privilege of working under her supervision and for her great encouragement and advice throughout the whole work.

I am sincerely indebted to *Dr. Tawhida Yassin Abdel Gaffar*, Lecturer of Paediatrics, Faculty of Medicine, Ain Shams University, for her great support, eminent advice, and patience in revising the whole study.

I would like to thank *Dr. Tarek Abdel Gawad*, Lecturer of Paediatrics, Faculty of Medicine, Ain Shams University.

Also, my deepest appreciation are due to *Dr. Hany Amin*, for his skillful participation.

Last, but not by all means the least, I thank my family and all my patients and their families, for without their help, this work would have never been accomplished.

CONTENTS

LIST OF TABLES	Page
LIST OF FIGURES	
LIST OF ABBREVIATIONS	
INTRODUCTION & AIM OF WORK	1
REVIEW OF LITERATURE	
CHAPTER 1: Ventricular Septal Defects	3
CHAPTER 2: Paediatric Echocardiography	52
CHAPTER 3: Assessment of Left Ventricular Functions	84
MATERIAL & METHODS	119
RESULTS	123
DISCUSSION	169
SUMMARY & CONCLUSION	183
REFERENCES	187
ARABIC SUMMARY	

LIST OF TABLES

	rage
Table (1): Congenital heart defect in chromosomal syndromes	17
Table (2): Summary of the parts that can be visualized in each epicardiographic view	66
Table (3): The axis changes with age	107
Table (4): R/S ratio according to age	107
Table (5): Q voltage according to lead and age	109
Table (6): R voltage and S voltage according to lead and age	109
Table (7): Symptomatology of the studied cases	124
Table (8): Physical signs of the studied cases	126
Table (9): Radiological findings of the studied cases	128
Table (10): ECG findings of the studied cases	130
Table (11): Echocardiographic finding of the control group	132
Table (12): Echocardiographic findings of the asymptomatic group	133
Table (13): Echocardiographic findings of the symptomatic group	134
Table (14): Statistical comparison between control group and the whole VSD group for	
all the studied parameters.	136
Table (15): Statistical comparison between control group and asymptomatic group for	
all the studied parameters.	138
Table (16): Statistical comparison between control group and symptomatic group for	
all the studied parameters.	140
Table (17): Statistical comparison between asymptomatic group and symptomatic	
group for all the studied parameters.	142
Table (18): Correlation between the size of VSD and all the studied parameters.	144
Table (19): Correlation between the pressure gradient and all the studied parameters.	146

LIST OF FIGURES

	Page
Fig. (1): Development of the intraventricular septum	4
Fig. (2): Diagramatic representation of the component of intraventricular septum	7
Fig. (3): Classification of VSD according to their location within the septum	14
Fig. (4): Schematic representation of an M-mode scan of the left ventricle	55
Fig. (5): Illustration of long axis	59
Fig. (6): Illustration of short axis	59
Fig. (7): Parasternal long axis	60
Fig. (8): Diagram demonstrating the various short axis slices	61
Fig. (9): Apical 4 chamber view	62
Fig. (10): Apical 4 chamber view with aorta	62
Fig. (11): Apical long axis view	63
Fig. (12): Apical long axis view with aorta	63
Fig. (13): Subcostal 4 chamber view	64
Fig. (14): (dp/dt)/total pressure and (dp/dt)/developed pressure	88
Fig. (15): V _{CE}	89
Fig. (16): Comparitive study between the studied groups regarding the size of VSD	148
Fig. (17): Comparitive study between the studied groups regarding the pressure gradient	149
Fig. (18): Comparative study between the studied groups regarding LAD, LV-EDD,	150
LV-ESD	
Fig. (19): Comparative study between the studied groups regarding LV-EDV, LV-ESV	151
Fig. (20): Comparative study between the studied groups regarding EF%, FS%	152
Fig. (21): Comparative study between the studied groups regarding S.V.	153
Fig. (22): Comparative study between the studied groups regarding C.O.P.	154
Fig. (23): Comparative study between the studied groups regarding E & A velocities	155
Fig. (24): Comparative study between the studied groups regarding E/A ratio	156
Fig. (25): Scattered diagram showing correlation between size and pressure gradient	157
Fig. (26): Scattered diagram showing correlation between size and LAD	158
Fig. (27): Scattered diagram showing correlation between size and EDD	159
Fig. (28): Scattered diagram showing correlation between pressure gradient and LAD	160
Fig. (29): Scattered diagram showing correlation between pressure gradient and EDD	161

Fig. (30): Coloured Doppler echocardiography in case No. 5.	162
Fig. (31): 2-D echocardiography of case No. 20	163
Fig. (32): 2-D echocardiography of case No. 9	164
 Fig. (33a): Coloured Doppler echocardiography of case No. 12	165
Fig. (33b): Doppler echocardiography of case No. 12	165
Fig. (34): 2-D echocardiography	166
Fig. (35a): 2-D echocardiography of case No. 3	167
Fig. (35b): Doppler echocardiography of case No. 3	167
Fig. (36a): Doppler echocardiography of case No. 7	168
Fig. (36b): M-mode echocardiography of case No. 7	168

LIST OF ABBREVIATIONS

AS : Aortic stenosis

ASD : Atrial septal defect

A-V : Atrio-ventricular

BAV : Bicuspid aortic valve

CA : Coarcitation of aorta

CHD: Congenital heart disease

CHF : Congestive heart failure

C.O.P. : Cardiac output

C/T ratio: Cardiothoracic ratio

Dd: Diastolic diameter

Ds : Systolic diameter

E/A : "E" velocity / "A" velocity

ECD : Endocardial cushion defect

ECG: Electrocardiogram

EDD : End diastolic diameter

EDV : End diastolic volume

EF%: Percentage ejection fraction

ESD : End systolic diameter

ESV : End systolic volume

ET : Ejection time

FS%: Percentage fraction shortening

LAD : Left atrial diameter

LV : Left ventricle

LVD : Left ventricular dilatation

LVH : Left ventricular hypertrophy

LVIV : Left ventricular inflow volume

LVOV : Left ventricular outflow volume

MR : Mitral regurgitation

MRI : Magnetic resonance imaging

MVP : Mitral valve prolapse

PDA: Patent ductus artriosus

PS : Pulmonary stenosis

PVOD : Pulmonary valve obstructive disease

QP/QS : Pulmonary to systemic pressure

RVD : Right ventricular dilatation

RVH : Right ventricular hypertrophy

SV : Stroke volume

VSD : Ventricular septal defect

Introduction & Aim of Work

INTRODUCTION & AIM OF THE WORK

Ventricular septal defect is a congenital defect of the interventricular septum allowing free communication between the ventricular chambers (Soto and Pacifico, 1990).

It is one of the most common congenital cardiac malformations accounting for approximately 30-40% of all children with CHD (Harrigan and Lee, 1985). It can occur either alone or in association with other cardiovascular anomalies (Canale et al., 1981).

The size of the defect and the relationship between systemic and pulmonary vascular resistance determine the degree and direction of shunting (Hamigan and Lee, 1985). Ventricular septal defect leads to increase pulmonary blood flow and this leads to increase left atrial diameter and left ventricular end diastolic volume, which will lead to increase left ventricular work and left ventricular dilatation. Very large pulmonary blood flow will result in additional right ventricular hypertrophy (Anderson et al., 1987). The assessment of left ventricular function has become progressively very important in the diagnosis—and management of children with congenital and acquired heart disease since the

1112

preservation of myocardium is now the standard by which therapy should be measured (Wilse, 1990).

The question of when to recommend operation in a patient with heart disease represent a difficult problem that is still not fully solved, early surgical treatment aims at avoiding irreversible left ventricular damage which eventually leads to postoperative cardiac failure and even death but premature operation is undesirable because of the problems of valvular prosthesis and other types of operative and post operative morbidities (Ross, 1981). Although many recent techniques for evaluating left ventricular performance have been established, echocardiography has gained great popularity as a safe, inexpensive and non-invasive technique (Kraus, 1985). Doppler signal with the two-dimensional echocardiographic instrument may give information in both a qualitative and quantitative sense (Goldberg et al., 1988).

The aim of this work is to study VSD as regard site, size and pressure gradient across it in order to find the relation of symptoms to the size of VSD and to asses the effect of VSD on left ventricular function and dimensions.

Review of Literature

Chapter I Ventricular Septal Defect

VENTRICULAR SEPTAL DEFECT

Congenital heart disease refers to structural or functional heart disease that is present at birth, even if it is discovered much later (Hoffman, 1990). VSD is a congenital defect of the interventricular septum allowing free communication between the ventricular chambers (Soto and Pacifico, 1990). VSD occurs either as an isolated malformation as an essential part of more complex malformations (Rao et al., 1971), or in association with unrelated cardiac anomalies of which the VSD does not form an essential part (Girod et al., 1966). A major portion of this chapter will be concerned with isolated VSD.

* Development of the Interventricular Septum

Formation of the heart tube takes place in the visceral mesoderm between the yolk sac and the intraembryonic coelam which will later become the pericardium.

The embryonic heart soon acquires several curvatures and becomes an S-shaped organ. This transformation process is called "looping" (Wenink, 1987). The major septa of the heart are formed between the 27th and the 37th day of development as the embryo grows in length. In the first mechanism of septation, masses of actively growing tissue fuse together to bridge the cardiac lumen.