THE ROLE OF NUCLEAR MEDICINE IN DIAGNOSIS AND THERAPY OF PRIMARY BRAIN TUMORS

Essay Submitted for the Partial Fulfillment of the Master Degree in Radiation Oncology and Nuclear Medicine

*By*Hesham Ahmed El-Ghazaly

M.B., B.Ch.

Supervised by

Prof. Dr. Laila Faris Matta

Professor and Head of Department of Radiation Oncology and Nuclear Medicine Faculty of Medicine-Ain Shams University

Prof. Dr. Hosam Mohamed El-Hosainy

Professor of Neurosurgery
Faculty of Medicine-Ain Shams University

Dr. Sohair Sayed Ismaeel

Assistant Professor of Radiation Oncology and Nuclear Medicine

Faculty of Medicine-Ain Shams University

Faculty of Medicine
Ain Shams University
1998

بسسد الله الرحن الرحيس

قالوا سبحانكلا علم لنا إلا ما علمتنا، إنكأنت العليم المكيم

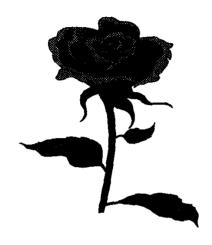
صدق الله العظيم

سورة البقرة–الآية:٣٢

Acknowledgment

First and foremost, thanks to Allah to whom I relate any success in achieving any work in my life.

I am greatly honored to express my sincere and profound gratitude to Prof. Dr. Laila Faris, Professor and Head of Radiation Oncology and Nuclear Medicine Department, Ain Shams University, for giving me the chance to work under her supervision and for her kind guidance, generous help and valuable directions that made this work possible. Words of thanks are little to express my gratefulness for her.


I am deeply grateful to Prof. Dr. Hosam El-Hoseiny, Professor of Neurosurgery, Ain Shams University, for his sincere help, continuous support and his kind cooperation during this work,

I wish to express my deep gratitude to Prof. Dr. Sohair Ismael, Assistant Professor of Radiation Oncology and Nuclear Medicine, Ain Shams University, for her generous help, valuable advise and continuous supervision.

Also, I would like to thank Dr. Magdy Shaaban for his continuous help and grateful advise.

Lastly, I would like to thank all senior staff and my colleagues of Radiation Oncology and Nuclear Medicine Department, Ain Shams University for their sincere help and cooperation during the accomplishment of this work.

Hesham El-Ghazaly

To my beloved parents. who are always the main source of my successes

List of Contents

		Page
Introduction and aim of the work		1
•	Functional anatomy	3
•	Blood brain barrier	11
•	Histology	17
•	Clinical picture	20
•	Epidemiology	28
•	Pathology	34
•	Radiological diagnosis	56
•	Radionucleide imaging	60
•	Illustrative cases	138
•	Radionucleide therapy	151
Summary		168
References		170
Αı	rabic summary	

List of Tables

		Page
•	Table (1): Clinical syndromes produced by endocrine activity pituitary adenomas	24
•	Table (2): Clinical findings in temporal lobe herniation	25
•	Table (3): Clinical findings of cerebellar-foramen magnum herniation	27
•	Table (4): Classification of primary intracranial tumors by cell of origin	29
•	Table (5): Frequency of primary intracranial brain tumors	30
•	Table (6): Frequency of intracranial tumors as a function of age range	31
•	Table (7): Relative frequency in Ain Shams University Specialized Hospital and Radiation Oncology and Nuclear Medicine Department, Ain Shams University	32
•	Table (8): Sex distribution from January (1995) to December (1997)	33
•	Table (9): Age distribution from January (1995) to December (1997)	33
•	Table (10): Pathologic characteristic of intracranial tumors	54
•	Table (11): Thallium-201 radiation absorbed dose	70
•	Table (12): Factors affecting TL-201 uptake by tumor cells	71
•	Table (13): Comparison between Thallium and Sestamibi	100
•	Table (14): Radioisotopes used in positron emission tomography	131
•	Table (15): Types of radionucleide therapy	151

List of Figures

		Page
•	Fig. (1): Lateral view showing the medial aspect of the	5
	brain	
•	Fig. (2): Basal view of the brain	8
•	Fig. (3): Blood brain barrier by electron microscope	12
•	Fig. (4): Frequency of primary intracranial brain tumors	30
•	Fig. (5 a,b): Anaplastic astrocytoma	41
•	Fig (6): Anaplastic astrocytoma	42
•	Fig. (7): Glioblastoma multiforms gross picture	42
•	Fig. (8 a,b,c,d): Histopathology of glioblastoma	43, 44
	multiforms	•
•	Fig. (9 a,b): Meningoima gross picture	51
•	Fig. (10 a,b): Malignant meningioma	53
•	Fig. (11): Schematic diagram of normal cerebral venous	64
	anatomy	
•	Fig. (12): Normal conventional brain scan	65
•	Fig. (13): Primary brain tumor by 99mTC	66
	glucoheptonate	
•	Fig. (14): Relationship between 201-thallium index and	82
	astrocytoma, anaplastic astrocytoma and glioblastoma	
•	Fig. (15): Correlation between 201-TL (early-delayed)	83
	and PCNA indices	
•	Fig. (16): Relation of thallium index to prediction of	93
	survival	
•	Fig. (17): High grade glioma with increased thallium and	109
	99mTC HMPAO uptake	
•	Fig. (18): High grade glioma with increased thallium but	110
	less 99mTC HMPAO uptake	_
•	Fig. (19): Low grade glioma with increased HMPAO	111
	uptake while no thallium uptake	
•	Fig. (20): Low grade glioma with no focal uptake of	112
	thallium and decreased HMPAO uptake	
•	Fig. (21): Somatostatin receptor binding	116
•	Fig. (22): Clinical application of octreoscan	118
•	Fig. (23): Meningioma imaging by octreoscan	121
•	Fig. (24): Pituitary adenoma imaging by octreoscan	126
•	Fig. (25 a, b): Case I	141
•	Fig. (26 a, b): Case II	142
	Fig. (27 a, b): Case III	143
	- · · · · · ·	· - -

•	Fig. (29 a, b): Case V	145
•	Fig. (30): Case VI	146
•	Fig. (31): Case VII	147
•	Fig. (32): Case VIII	148
•	Fig. (33 a, b, c, d): Case IX	149, 150
•	Fig. (34): Case of injection of radiolabelled monoclonal	157
	antibody	
•	Fig. (35): Planar scintigraphy in patient injected with	159
	radiolabelled antibodies after 2 months	
•	Fig. (36): Method of injection in cystic	163
	craniopharyngioma	
•	Fig. (37 a, b): MRI before and after injection	165, 166
	phosphorous in cystic craniopharyngioma	