IN SHAMS UNIVERSITY **ACULTY OF EDUCATION** DEPARTMENT OF BIOLOGICAL CIENCES & GEOLOGY

"Biological Studies on Some Freshwater Bivalve Molluscs in Egypt"

THESIS

Submitted in partial fulfilment for the Master's degree in science teacher preparation (Zoology)

59140

By

By

194.11

Ilham Raafat Awad

B.Sc.& Ed. (1986) General distoma in teacher preparation in Zoology(1987) Special diploma in teacher preparation in Zoology (1988)

Supervised by

Dr. Anwar A. Said **Prof. of Comparative** animal physiology, Faculty of Education, Ain Shams University. Dr. Abdalla M. Ibrahim Prof. of Invertebrate Zoology and Head of the Department Faculty of Science, Ain Shams University

Dr. Mahmoud N. A. Gabal Lecturer in Zoology Department, Faculty of Science, Ain Shams University.

(1995)

ACKNOWLEDGMENT

First and foremost, thanks to Allah who enabled me to overcome all difficulties of the work.

My deepest gratitude to Dr. Abdalla M. Ibrahim. Professor of invertebrates and head of Zoology Department. Faculty of Science, Ain Shams University for suggesting the problem, supervising the work and continuous guidance in the preparation and reading of the manuscript.

I'm greatly indebted to Dr. Anwar A. Said Professor of comparative animal physiology, Department of Biological Sciences and Geology, Faculty of Education, Ain Shams University for his supervision, kind help and encouragement.

Sincere thanks and appreciation are extended to Dr. Mahmoud N. A. Gabal, Lecturer of invertebrates, Faculty of Science, Ain Shams University for his continuous help and participation in supervision.

Thanks are also due to Dr. Waheed M. Emam, Lecturer in above Department for his help in morphometric analysis.

Finally, my appreciation and thanks are due to Prof. Dr. Ahmed F. Afifi exhead and to Prof. Dr. Mostafa Abdalla, head of Biological Sciences and Geology Department, Faculty of Education, Ain Shams University for all the facilities, offered to me during this work.

ABSTRACT

In the present work, the freshwater clam Corbicula fluminea was morphologically and biologically investigated. The studies included the taxonomical status of this species according to the morphological and biometric parameters of the shell together with the macro- and micro-anatomy of different organs of the soft parts as well as the biology of reproduction.

The collected specimens are characterized with the heavy, semi-solid, equivalve shell which has a serrated sculpture. The ligaments are external and opisthodetic. The pallial line is continuous and distinct. The hinge is heterodont. The present clam exhibits three colour morphs, varying from olive green to straw yellow or cream-coloured shell in fully grown individuals. The juveniles are characterized by three flashes of purple colour located under the umbo and radiate outwards.

The increment in growth rate of C. fluminea for smaller individuals calculated by the integrated method of Pauly (1983) indicating that its life span reaches about 2 years. The length-weight relationship was expressed by the geometric regression equation and indicating that the weight increases with the increasing of length. The values of the coefficient of condition (K_n) increases with the increasing of length and age. In estimation of the theoretical growth in length, the straight line equation gave better results in estimation of theoretical growth in weight rather than the straight line equation.

These clams were simultaneous hermaphrodite, whereas the male gonadal tissues were less common than female tissues. The onset of sexual maturity was less common than female tissues. The onset of sexual maturity was indicated at 7 mm shell length. Ontogenitically, C. fluminea is proto-oogamous where the oogenic follicles begin to form before any appearance of spermatogenic follicles. Maturity stages of the gonads were divisible into 4 stages: Premature, Mature, Ripe and Spent stages. C. fluminea spawns twice a year, one in summer and other in autumn. It incubates fertilized eggs to a length of 220 µm within the inner demibranchs of the ctenidia which possess ctenidial glands. The embryos are differentiated into blastulae, gastrulae, trochophores, veligers, pediveligers, early and late straight-hinged juveniles. pediveliger and early to late juveniles are usually shed from the parent clam. The straight-hinged juvenile start independent life and grow into an umbonal juvenile (at about 500 um).

Key words:-

Bivalvia.
Freshwater.
Corbicula fluminea.
Taxonomy.
Biometric studies.
Macro-and Micro-anatomy.

Reproduction.

CONTENTS

PART I:	
CHAPTER I:	
INTRODUCTION AND AIM OF THE WORK	
CHALLER II:	I.
REVIEW OF LITERATURE	
	. 4
MATERIAL AND METHODS	
PART II:	16
CHAPTER I:	
TAYONOMOUT	
TAXONOMICAL AND MORPHOLOGICAL	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
(MÜLLER, 1774)	21
1-1: Synonymy	22
f-3: Shell colour and morphotom	22
LIST OF ABBRIVIATIONS USED IN THE	27
FIGURES 2-5.	
	28
CHAPTER II:	
II. BIOMETRIC STUDIES	
	36
2-2 Length-weight & shell weight relationships	36
2-3- Relative coefficient of condition (K _n ) 2-4- Theoretical growth in langet	37
2-4- Theoretical growth in length.	38
2-5- Theoretical growth in weight.	39
	41
CHAPTER III:	
GENERAL ANATOMY.	
	51
5-71-1- I ile mantia	
	51
	52
(B) Organs underlying the mantle.	54
* * Litt (ADISI balas	~ .
3-B-2- The ctenidia.	54 55
	33

3-B-3 The foot	57
3-B-4- The heart	58
3-B-5- The kidney	58
3-B-6- The digestive system	59
a) The mouth and the labial palps	59
b) The oesophagus.	60
c) The stomach.	60
d) The digestive gland.	61
e) The style sac and mid-gut.	61
f) The rectum.	62
3-B-7- The gonads	62
i) The male, gonad	63
ii) The female gonad	64
LIST OF ABBREVIATIONS USED IN THE	
FIGURES (12&13)	65
CHAPTER IV: REPRODUCTIVE STRATEGY. 4-1 Gonadal differentiation	
4-2- Length at first sexual maturity.	93
4-3- Maturity stages	94
A) Stages of female gonads.	95
B) Stages of male gonad	95
4-4- Reproductive cycle	96
4-5- Fertilization	97
4-6- Larval developmental stages	98
PART III:	99
CHAPTER I:	
DISCUSSION	115
CHAPTER II:	
SUMMARY.	
CHAPTER III:	130
<del>-</del>	
REFERENCES.	134
Arabic summary	

# LIST OF THE FIGURES

- Fig. (1): The external shell dimensions of C. fluminea.
- Figs. (2-5): Diagrammatic drawing of a dorsal and ventral view of the left and right shell valves of *C. fluminea*, showing its external and internal features.
- Figs. (6-8): Photographs of C. fluminea, showing the external and internal features of different forms of the shell.
- Fig. (9): Growth curve for *C.fluminea* computed by the integrated method of Pauly (1983).
- Fig. (10): Shell length shell weight relationship.
- Fig. (11): Length weight and  $K_n$  relationships.
- Figs. (12&13): Diagrammatic drawing of C. fluminea, showing the arrangement of the main body organs.
- Fig. (14): Photomicrograph of L.s. of the mantle of C.fluminea, showing its structure.
- Figs. (15&16): Photomicrographs of L.S. of C. fluminea, showing the structure of labial palps.
- Figs. (17&18): Photomicrographs of T.s. of C. fluminea, showing the attachment of the gills to the wall of the visceral mass.

_(iii)	
(-^-)	 

#### LIST OF FIGURES

- Fig. (19): Photomicrograph of T.S. C. fluminea, showing the epibranchial chamber, the gonopore and the gonoduct.
- Figs. (20-22): Photomicrographs of T. S. of the inner gill of C. fluminea, showing its structure and the presence of ctenidial glands.
- Figs. (23&24): Photomicrographs of T. S. of C. fluminea, showing histological structure of the foot.
- Figs. (2., 27, 30, 34 &35): Photomicrographs of T. S. of C. fluninea, showing the positions of the male follicles in the visceral mass.
- Figs. (25&26): Photomicrographs of L. S. of C. fluminea, showing the structure of the oesophagus.
- Figs. (27, 28 & 29): Photomicrographs of L. S. of C. fluminea, showing the structure of the stomach, the style sac and the mid-gut.
- Figs. (31&32): Photomicrographs of L. S. of the rectum of C. fluminea showing its structure.
- Fig. (33): Photomicrograph of T. S. of the female follicles of C. fluminea showing its structure.
- Figs. (36, 37 &38): Photomicrographs of L. S. of C. fluminea, showing the structure of the kidney, heart, pericardial cavity, renopericardial aperture, supra-branchial chamber, the gone-duct and the gonopore.

- List of figures Fig. (39): Photomicrograph of T. S. of immature individual of C. fluminea (4mm), showing no sign of gonadal tissue.
- Fig. (40): Photomicrograph of T. S. of young individual of C. fluminea (7mm), showing its early development of female gonad in close association with wall of intestine.
- Figs. (11-44): Photomicrographs of T. S. of C. fluminea, showing the different stages of female maturity.
- Figs. (45-48): Photomicrographs of T. S. of C. fluminea, showing the different stages of male maturity.
- Figs. (49&50): Photomicrographs of T. S. of female follicles of C. fluminea, showing the different stages of development.
- Fig. (51): Photomicrograph of T. S. of male follicles of C. fluminea, showing the different stages of development.
- Figs. (52&53): Photomicrographs of T. S. of C. fluminea, showing the presence of developing sperm and ova within the same
- Figs. (54 &55): Photomicrographs of T. S. of the inner demibranch of C. fluminea, showing the early stages of larval development.
- Figs. (56&57): Photomicrographs of T. S. of the inner demibranch of C. fluminea, showing the later stages of larval development.

(v)

## LIST OF TABLES

- Table (1): Showing the average values of different shell measurments of adult C. fluminea.
- Table (2): Showing the estimated lengths of the different age groups of C. fluminea.
- Table (3): Showing the mean observed length, mean observed total weight, mean calculated total weight and relative coefficient of condition  $(K_n)$  of C. fluminea.
- **Table (4):** Showing the mean observed length, mean observed shell weight and mean calculated shell weight of *C. fluminea*.
- **Table (5):** Showing the mean observed and calculated lengths of different age groups of *C. fluminea* using VBGF and straight line equation.
- Table (6): Showing the mean observed and calculated weight of different age groups of C. fluminea using VBGF and straight line equation.