
Catalytic and Physical Characteristics of Dispersed Metal-Tetraphenylporphyrin on

Different Supports

 $\mathbf{B}\mathbf{y}$

Hany Mohamed Ahamed Abdel Dayem (B. Sc. Chemistry)

541.795 H.M

Presented To

The Faculty of Science Ain Shams University Cairo 49177

For

The Degree of M. Sc.

In Chemistry

1994

To My Father Memory and To My Mother Sister and Brothers

<u>ACKNOWLEDGEMENT</u>

I wish to express my deepest gratitudate to my principle supervisor professor Dr. Salah A. Hassan for giving me the opportunity to work within his school of catalysis, designing the point of research, discussing and interpretting the result and for his continous guidance during the course of this work.

I wish olso to express my thanks to Dr. Khalid E. Hashem for his sincer efforts, devotion, constant support, talented supervision.

Thanks are also to Dr. *Hamdi A. Hassan* for the helpful supervision and his constant support through out this wrok.

I am finally indebted to my mother for her continous supports and encourargements

THE THEORETICAL CURRICULA FOR THE DEGREE

Beside the work carried out in this thesis the student has accomplished successfully the post graduate studies for the partial fulfillment of the M.Sc. degree in the following topics:

- 1- Advanced Electrochemistry.
- 2- Statistical Thermodynamics.
- 3- Physical polymer Chemistry.
- 4- Advanced Chemical Kinetics.
- 5- Quantum Mechanics.
- 6- surface Chemistry.
- 7- Computer science.
- 8- Cement Chemistry.
- 9- Catalysis.

Prof.Dr. A.F.Fahmy

Head of Chemistry Department

CONTENTS

Chap	ter	I.

INTRODUCTION

1.1 Introductory Remarks	
Homogeneous, heterogeneous and "heterogenized homogeneo	us
catalysts.	1
1.2 Classification of Catalysts Containing Immobilized	
Complexes.	4
1.2.1 Inclusion of complexes in volume of matrice.	4
1.2.2 Supported complexes on matrice surface.	6
(a) Immobilization in a film of non-volatile solvent.	7
(b) Formation of dispersed phase of supported metal comple	×
compound on matrice surface	7
(c) Binding complexes by chemical bonds with surface	
anchoring sites	8
1.2.3 Supports for anchoring metal complexes	10
1.2.3.1 Organic polymers as supports.	10
1.2.3.2 Inorganic supports	12
(a) Hydroxyl groups on oxide surface as binding centers.	1 4
(b) Anchoring complexes via formation of a heteroatomic	
metal-metal bond	17
(c) Organic functionalities as anchoring sites	18
1.2.4 Anchoring complexes of various nuclearity	21
(a) Binuclear complexes	21
(b) Anchored cluster complexes	22
(c)Surface polynuclear species with an indefinite number	

of metal atoms	2:
1.3 Porphyrins and Metalloporphyrin Complexes	24
1.3.1 General.	25
1.3.2 Characterization of TPP and MTPP complexes	25
(a) Ultra-violet absorption technique	26
(b) Infra-red absorption technique	27
(c) X-ray diffraction and crystallography techniques	28
1.3.3 Kinetic behaviours of TPP and MTPP complexes	30
(a) Photoactive properties	30
(b) Oxidation -reduction behaviour	31
(c) Stability properties	36
(d) Ion exchange properties	36
(e) Interaction phenomena	36
1.3.4 Catalytic activity of supported and unsupported MTPP	38
1.3.4.1 Donor catalytic activity	38
1.3.4.1 Acceptor catalytic activity	42
1.4 Aim of Work	45
Chapter II. EXPERIMENTAL DETAILS	47
2.1 Synthesis of Pure Ligands and Cobalt Tetraphenyl-	
porphyrin Complex.	47
(a) Purification of pyrrole and methanol.	47
(b) Synthesis of tetraphenylporphyrin $(H_2 TPP)$	47
(c) Synthesis of tetraphenylporphyrin diacid (H_4TPPC1_2)	48
(d) Synthesis of cobalt-tetraphenylporphyrin	
[Co_TPP (OCH_)]	48

2.:	2.	Preparation of Supported Catalysts	49
2	2.2.1		50
	(a)) Silica-gel support	50
	(Ъ)) Strong cation-exchange resin in hydrogen form (R-H ⁺)	50
2	2.2.2		50
2.3	3	Characterization Techniques	51
2	2.3.1	Elemental analysis	51
2	.3.2	Thin layer chromatography	51
2	.3.3	Infra-red analysis	52
2	.3.4	Far-IR spectral analysis	52
2	.3.5	UV and visible spectrophotometeric analysis	52
2	.3.6	X-ray diffraction analysis (XRD)	52
2	.3.7	Electrolytic conductance	53
2	.3.8	Atomic absorption measurements	53
2.	.3.9	Thermogravimetric analysis (TGA)	53
2.	.3.10	Magnetic susceptibility measurements	53
2.	.3.11	Computational minimization procedure	53
2.	3.12	Scanning electron microscopic study (SEM)	54
2.	3.13	Measurment of acid-base properties of silica	54
2.	3.14	Dissolution technique	55
2.4		Adsorption Techniques	55
	(a)	Nitrogen gas	55
	(b)	Hydrogen gas	56

2.4.1	Physical adsorption of nitrogen	56
2.4.2	Chemisorption of hydrogen	60
2.5	Measurement of Catalytic Activity	61
CHAPTER	III. RESULTS AND DISCUSSION	64
3-1	Physicochemical Characterization of Synthesized	
	Ligands, Complex and Various Prepared Catalyst Samples	64
3-1-1	IR spectra	64
(a)	Synthesized ligands and complex	64
(b)	Supported cobalt complex/SiO ₂ -gel catalyst samples	67
(c)	Supported cobalt complex/resin catalyst samples	68
3-1-2	UV- spectra	69
(a)	Synthesized ligands and complex	69
(b)	Supported cobalt complex/SiO _z -gel and (R-H ⁺)resin	
	samples	70
3.1.3	X-ray diffraction analysis	73
(a)	Synthesized ligands and complex	73
(b)	Supported cobalt complex/SiO _z -gel catalyst samples	7
(c)	Supported cobalt complex/resin catalyst samples	78
3.1.4	Structural characterization of ligands and complex	80
(a)	Thin layer chromatographic investigation	03
(b)	Electrolytic conductance	81
(c)	Elemental analysis	81
(d)	Thermogravimetric analysis	83
(e)	Atomic absorption measurements	84

(f)	Analysis of magnetic susceptibility results	85
(g)	Computational minimization	86
3.1.5	Conclusion	87
3.2	Surface Characteristics and Surface Morphology of The	
s	ynthesized Ligand, Complex and Various	
S	upported Catalyst Samples	89
3.2.1	General	89
3.2.2	Adsorption-desorption isotherms	89
3.2.3	Surface characteristics of the synthesized	
	ligand, cobalt complex and various supported	
	samples on silica surface	90
3.2.4	Pore analysis of supported samples on silica	
	surface through V_1 -t plots	9.3
3.2.5	Surface characteristics of various supported	
	samples on the surface of the ion exchange resin	95
3.2.6	Surface morphology of the studied complex,	
	supports and selected supported catalyst	
	samples	98
3.2.7	Conclusion	100
3.3	Nature of Complex-Support Interaction	101
3.3.1	Acid-base characteristics	101
(a)	General	101
(b)	Acid-base results	104
(:	i) Titration curves	104
(ii) Estimation of amount of bases (AI_{-}^{+}) and acids	

(Δr_0) and their strengths	106
(1) Co ₄ TPP(OCH ₃) ₂ /SiO ₂ samples	100
(2) Co ₄ TPP(OCH ₃) ₂ /Resin	107
3.3.2 Estimation of free and interacted fraction of	
supported complex from dissolution data	109
(a) General	109
(b) Dissolution data	110
(i) Co ₄ TPP(OCH ₃) ₂ /SiO ₂ supported samples	110
(ii) Co ₄ TPP(OCH ₃) ₂ /Resin	113
(iii) Kinetic behaviour of the ion exchange process	116
3.3.3 Mode and parameters of surfrace dispersion of	•
supported Co ₄ TPP(OCH ₃) ₂	117
3.3.3 (a) General	117
3.3.3 (b) Behaviour of H_2 adsorption on various samples.	118
(i) Adsorption isotherms of hydrogen at different	
temperatures	118
(ii) Adsorption isotherms of hydrogen on supported	
H ₄ TPPCl ₂ ligand and Co ₄ TPP(OCH ₂) ₂ complex	119
(iii) Adsorption isotherms of hydrogen on pure	
unsupported H ₄ TPPCl ₂ ligand of different loading on	
silica gel	120
(iv) Adsorption of H_2 on various Co_4 TPP(OCH ₂) ₂ /Silica	
catalyst samples	120
3.3.3 (c) Behaviour of H_2 -adsorption on various samples of	

	Co_4 TPP(OCH ₃) 2 complex supported on resin (R-H ⁺)	121
3.3.3 (d) App	arent dispersion	omplex
in	the studied samples	121
3.3.4	Conclusion	124
3.4 Cata	alytic Activity Measured in H ₂ O ₂ Decomposition	
	Reaction	126
3-4-1	General	126
3-4-2	pH dependence of the rate constants	127
3-4-3	Catalytic activity of various supported samples	130
3.4.4	Activation parameters and compensation effect	135
CHAPTER VI	SUMMARY and CONCLUSION	140
REFEREN	CES	144156

ARABIC SUMMARY

I. INTRODUCTION

1- INTRODUCTION

1.1. Introductory Remarks

Homogeneous, heterogeneous and "heterogenized homogeneous" catalysts

The development of catalysis over last two decades been characterized by the wide application of metal complexes organometallic compounds as catalysts. Using novel catalytic systems, industrial processes have been developed for both the production of products on a large scale .e.g., polypropylene ,high density polyethylene, acetaldehyde, acetic acid, alcohols and propylene oxide (1-3) and for the synthesis of expensive compounds in relatively small quantities, e.g., asymmetric amino acids (3). As a rule, these processes are performed under fairly mild conditions and are characterized by high selectivity. Initially for some new catalytic technologies coordination compounds were used as solid heterogeneous catalysts , e.g., the process of polypropylene production based on the application of titanium trichloride as a catalyst. But many processes ,e.g., ethylene oxidation to acetaldehyde and synthesis of aldehydes and alcohols by hydroformylation of olefins, have been developed with the application, as catalysts, of coordination or organometallic compounds in solution (homogeneous catalysts). However for large scale processes, the application of such catalysts leads to significant problems (1):

1) Difficulties in the separation of catalyst from the reaction medium and catalysts recovery. This is a great

CHAPTER "1" Introduction.