APPROVAL SHEET

SEROLOGICAL STUDIES FOR DIAGNOSIS OF SOME PLANT VIRUSES

BY

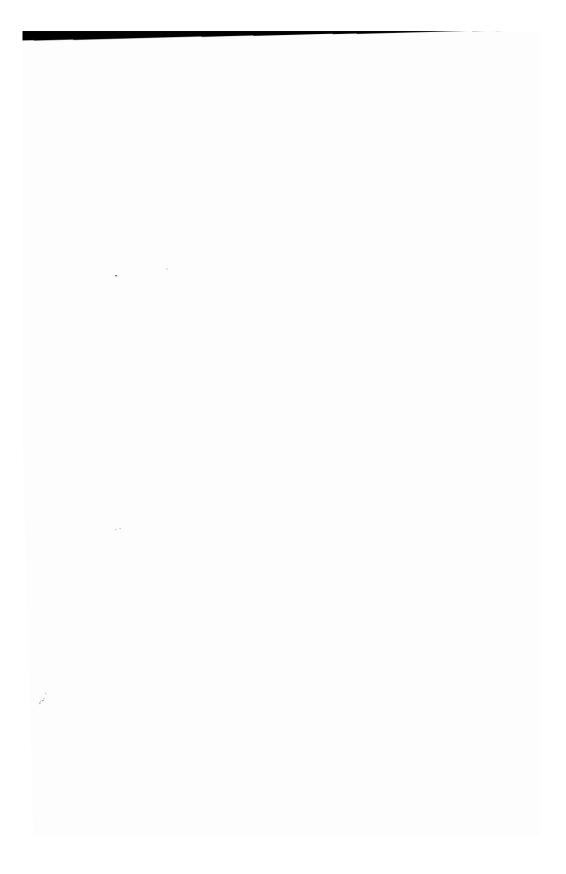
REDA MOHAMMED MOHAMMED TAHA

B. Sc. Microbiology 1984M. Sc. Microbiology 1991

This Thesis for Ph.D degree has been approved by:

Prof. Dr. Sayed Ahmad Salama (E.a. Salama)

Professor of Virology, Fac. Agric. Cairo University


Prof. Dr. Hala Mostafa Habib (_______)

Professor of Virology Fac. Science, Cairo University

Prof. Dr. Youssef Abdel- Ghany Youssef (

Professor of Microbiology, Fac. Science, Ain-Shams University

Date of examination 13 / 10 / 1996

SEROLOGICAL STUDIES FOR DIAGNOSIS OF SOME PLANT VIRUSES

 $\mathbf{B}\mathbf{v}$

Reda Mohammed Mohammed Taha

B.Sc Microbiology 1984, M.Sc Microbiology 1991

Linda the generation of

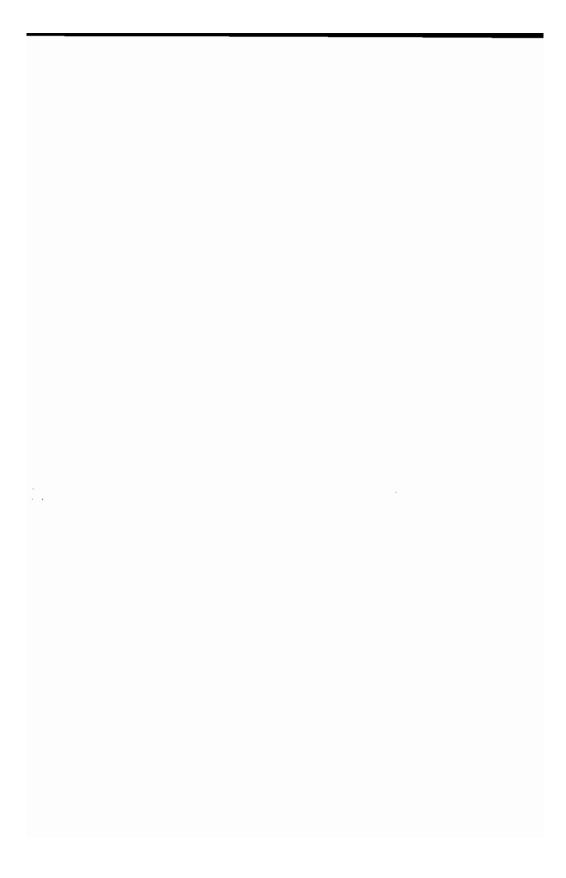
Under the supervision of

Dr. Youssef A. Youssef

Prof. of Microbiology, Faculty of Science, University of Ain Shams Dr. Esmat K. Allam

Prof. of Virology, Faculty of Agriculture, University of Ain Shams
Dr. Kouka Saad Eldin Abdel-Wahhab
Prof. of Virology, Faculty of Medicine, University of Al-Azhar

Abstract


Preparation of virus purified suspension was carried out using Polyethylene glycol (PEG) for tobacco mosaic virus (TMV), ammonium sulphate and ultra centrifugation for tobacco necrosis virus (TNV) and PEG and ultracentrifugation for potato virus X (PVX). Purified virus suspensions obtained indicated a good virus concentrations as determined biologically (infectivity assay) and spectrophotometrically. Electron microscopic examination of the purified suspensions was carried out using negative staining technique with uranyl acetate. Production of specific antisera for TMV, TNV and PVX was preformed using rabbits immunization with total amounts injected; 12.87 mg of TMV, 7.874 mg of TNV and 8.922 mg of PVX. The titer of the prepared antisera was determined using tube precipitin test. The lowest amount of purified virus suspension needed for the production of virus specific antiserum with adequate titer was determined. The suitability, efficiency and sensitivity of different eight serological tests (Indirect-FLISA, indirect-DAS-ELISA, dot-ELISA, rocket immunoelectrophoresis, tube precipitin, Ouchterlony double diffusion, single radial immunodiffusion and immunoelectron microscopy) for assay, detection and diagnosis of the three viruses were determined. Indirect-ELISA procedures were found to be much better suited for diagnostic work because of its high sensitivity. Immunoelectron microscopy was rapid and very sensitive for virus detection and diagnosis involving two properties (virus morphology and serological specificity). The concentration of TMV, TNV and PVX infected sap was determined using single radial immunodiffusion and rocket immunoelectrophoresis. The present results clearly indicated that both Ouchterlony and radial immunodiffusion were cost-effective but less sensitive compared to the other methods. Tube precipitin test proved to be efficient for the determination of antiserum titer and virus antigen end-point.

Key words: TMV, TNV, PVX, Serology, ELISA, electron microscopy.

ACKNOWLEDGMENT

I am greatly indebted and would like to express deepest gratitude to Dr. Esmat. K. Allam, Prof. of Virology Fac. of Agriculture. University of Ain Shams, Dr. Youssef A. Youssef, Prof. of Microbiology, Fac. of Science, University of Ain Shams, and Dr. Kouka Saad Eldeen Abd El-Wahhab Prof. of Virology Fac. of Medicine, University of Al-Azhar for their faithful supervision, continued advice, constructive criticism and continued encouragement which was of value to complete this work. Thanks to Dr. Khaled El-Dougdoug, Dr. Abdelallah M. El-Ahdal, Ass. Prof. of virology. Department of Microbiology, Fac. of Agric., University of Ain Shams, and Dr. Hussam A. Ghanem lecturer of virology Department of Microbiology, Fac. Science University of Ain Shams for their guidance throughout this work. Thanks to all staff members of the Virology Lab. Fac. of Agric. University of Ain Shams and all staff members of Virology Lab Fac. of Medicine, University of Al -Azhar for their assistance and cooperations.

I would like to acknowledge **Dr. Abdelftah M. El-Shershaby**, Dean of Fac. of Science El-Fayoum branch, University of Cairo, **Dr. Mahmoud Hafez** Head of Department of Botany, and all staff members of Department of Botany, Fac. of Science El-Fayoum branch, University of Cairo for their enthusiastic assistance and good spirit of cooperation.

CONTENTS

1-INTRODUCTION	1
n -REVIEW OF LITERATURE	3
III-MATERIALS AND METHODS	28
Part I	28
Virus purification and preparation of virus antisera	28
1- Source and Propagation of viruses	29
2- Virus Purification	28
3- Evaluation of the purified virus suspension	31
A- Biologically (infectivity assay)	31
B- Spectrophometrical determination of virus concentration	31
C- Electron microscopic examination of the purified suspensions	31
C-1-Preparation of the negative stain	31
C-2-Preparation of virus specimen	32
4- Preparation of virus antisera	32
4-1 Rabbit immunization	32
4-2-Preparation of antiserum against TMV, TNV and PVX using	
ducks	33
Part II	34
Serological tests	34
1- Tube precipitin test	34
2- Ouchterlony double diffusion test	35
2-1- The procedure of double diffusion test	35
2-2- Sonication of PVX particles	35
3- Single radial-immunodiffusion test	36
4- Rocket immunoelectrophoresis	36
5- Indirect enzyme-Linked immunosorbent assay	38
5-1- Purification of immunoglobulins	38
5-2- Indirect ELISA procedure	39
6- Indirect double-antibody sandwich (DAS-ELISA test)	41
7- Dot-immunobinding (dot-ELISA)	44
8- Immunoelectron microscope test (IEM)	45
IV-RESULTS	47
Part I	47
Virus purification and preparation of antisera	47
1- Virus propagation and indicator hosts	47
2- Virus purification	47
3- Evaluation of the purified suspension	51

3-1- Infectivity assay	51
3-2- Spectrophotometrical determination of virus concentration	54
3-3- Electron microscopic examination of the purified suspension	56
4- Immunization of rabbits and determination of antiserum titer	61
Part II	66
1- Serological studies	66
1-1- Tube precipitin test	66
1-2- Ouchterlony double diffusion test	70
1-3- Single radial immunodiffusion test	71
1-4- Rocket immunoelectrophoresis	78
I-5- Indirect enzyme-linked immunosorbent assay	86
1-6- Indirect double antibody sandwich enzyme-linked	
immunosorbent assay (DAS-ELISA)	86
1- 7- Dot immunobinding assay (dot- ELISA)	97
1-8- Immunoelectron microscope	101
2- Evaluation of the different serological tests used	105
V- DISCUSION	114
VI- SUMMARY	134
VII- REFERENCES	137
VIII- ARABIC SUMMARY	

٦.

LIST OF TABLES	age
Table (1) schedule of TMV and TNV immunization using ducks	34
Table (2) Infectivity assay of TMV purified suspension using	
Nicotiana glutinosa as a local lesion host	52
Table (3) Infectivity assay of TNV purified suspension using	
Phaseolus vulgaris var contender as a local lesion host	53
Table (4) Infectivity assay of the purified suspension of PVX	
using Chenopodium amaranticolor as a local lesion host	54
Table (5) Absorption spectra of TMV purified suspension at	
different wavelengths	55
Table (6) Absorption spectra of TNV purified suspension at	
different wavelengths	55
Table (7) Absorption spectra of PVX purified suspension at	
different wavelengths	56
Table (8) Titration of TMV antiserum against purified virus	
suspension using tube precipitin test	63
Table (9) determination of the antiserum titer prepared with the	
decreasing of the total amount of TMV purified suspension	n
used for rabbits immunization using tube precipitin test	63
Table (10) Titeration of TNV antisera using tube precipitin test	64
Table (11) determination of the antiserum titer with decreasing of	
the total amount of TNV purified suspension for injection	
using tube precipitin test	64
Table (12) Titeration of PVX antisera against purified PVX	
suspension using tube precipitin test	65
Table (13) Determination of the antiserum titer prepared	
with the decreasing of the total amount	65
Table (14) Estimation of TMV purified suspension concentration	
against specific antiserum using tube precipitin test	67
Table (15) The calculation of TMV purified suspension	
concentration in terms of mg-ug/ml and mg-ug (against	

specific TMV antiserum) using tube precipitin test	67
Table (16) Estimation of purified suspension of TNV concentration	1
against specific antiserum using tube precipitin test	68
Table (17) The calculation of TNV purified suspension	
concentration interms of mg-ug/ml and mg-ug against	
specific antiserum using tube precipitin test	68
Table (18) Estimation of PVX purified suspension concentration	
against specific PVX antiserum using tube precipitin test	69
Table (19) The calculation of PVX purified suspension	
concentration in trems of mg-ug/ml and mg-ug (against	
specific PVX antiserum) using tube precipitin test	69
Table (20) The calculation of the area under rocket shaped	
precipitin bands obtained by using rocket immunoelectroph	oresis
test for TMV	80
Table (21) Calculation of the area under rocket shaped precipitin	
bands formed for TNV by rocket immunoelectrophoresis	82
Table (22) Calculation of the area under rocket shaped	
precipitin bands formed by using rocket immuno electropho	resis
test of PVX purified suspension	84
Table (23) Absorbance values at 405 nm obtained using	
indirect-ELISA test for TMV	88
Table (24) Absorbance values at 405 nm obtained using	
indirect-ELISA test for TNV	88
Table (25) Absorbance values at 405 nm obtained using	
indirect-ELISA test for PVX	89
Table (26) Absorbance values at 405 nm obtained using	
indirect-DAS-ELISA test for TMV	89
Table (27) Absorbance values at 405 nm obtained using	
indirect-DAS-ELISA test for TNV	90
Table (28) Absorbance values at 405 nm obtained using	
indirect-DAS-ELISA test for PVX	90

Table (29) The calculation of TMV purified suspension	
concentration in terms of (ug-ng) against specific	
antiserum using dot-immunobinding assay test	99
Table (30) The calculation of TNV purified suspension	
concentration in terms of (ug-ng) against specific	
antiserum using dot-immunobinding assay test	99
Table (31) The calculation of PVX purified suspension	
concentration in terms of (ug-ng) against specific	
antiserum using dot-immunobinding assay test	100
Table (32) Evaluation of the serological tests used for TMV studies	107
Table (33) Evaluation of the serological tests used for TNV studies	108
Table (34) Evaluation of the serological tests used for PVX studies	109

LIST OF FIGURES

Fig (1) Indirect ELISA procedure	40
Fig (2) Indirect ELISA method combined with the double	
antibody sandwich procedure	43
Fig (3) Severe mosaic and malformation produced by TMV on	
N. tabaccim var samsum as a propagative host	48
Fig (4) Local lesions produced by TMV	48
Fig (5) Necrotic local lesions produced by TNV	49
Fig (6) Mosaic symptoms and local lesion produced by PVX	50
Fig (7) Electron micrograph of negatively stained TMV particles	57
Fig (8) Electron micrograph of negatively stained TNV particles	58
Fig (9) Electron micrograph of negatively stained PVX particles	59
Fig (10) Electron micrograph of negatively stained sonicated PVX	60
Fig (11) Double diffusion test in agar of TMV	72
Fig (12) Double diffusion test in agar of TNV	72
Fig (13) Double diffusion test in agar of PVX	73
Fig (14) A radial immunodiffusion test for TMV	75
Fig (15) Single radial immunodiffusion test for TNV	76
Fig (16) A single radial immunodiffusion test for PVX	77
Fig (17) Rocket immunoelectrophoresis of TMV	79
Fig (18) Area under rocket shaped precipitin band of TMV	
using rocket immunoelectrophoresis	81
Fig (19) Rocket immunoelectrophoresis of purified TNV	82
Fig (20) Area under rocket shaped precipitin band of TNV	
using rocket immunoelectrophoresis	83
Fig (21) Rocket immunoelectrophoresis of PVX	84
Fig (22) Area under rocket shaped precipitin band of PVX	
against virus dilutions using rocket immunoelectrophoresis	85
Fig (23) Indirect-ELISA absorbance values for TMV	91
Fig (24) Indirect-ELISA absorbance values for TNV	92
Fig (25) Indirect-ELISA absorbance values for PVX	93

Fig (26) Indirect DAS-ELISA values for TMV	94
Fig (27) Indirect DAS-ELISA values for TNV	95
Fig (28) Indirect DAS-ELISA values for PVX	96
Fig (29) Dot-immunobinding assay results for TMVMinimum	
concentration of TNV detected using different serological	
tests, TNV(B) and PVX(C)	98
Fig (30) Immunoelectron microscopy for purified TMV and	
specific antibody	102
Fig (31) Immunoelectron microscopy test for TNV against	
specific antiserum	103
Fig (32) Immunoelectron microscopy for PVX purified particles	
and its specific antibody	104
Fig (33) Minimum concentration of TMV detected using	
different serological tests	110
Fig (34) Minimum TMV particles number detected using	
different serological tests	111
Fig (35)Minimum concentration of TNV detected using	
different serological tests	112
Fig (36) Minimum concentration of PVX detected using	
different serological tests	113