RAPID FLOW CYTOMETRIC BACTERIAL DETECTION AND ANTIBIOTIC SUSCEPTIBILITY IN BODY FLUIDS

Thesis
Submitted for partial fulfillment of
M.D. Degree in
Clinical and Chemical Pathology
By

64 54 8

Ghada Abdel Wahed Ismail

M.B., B.ch., M. Sc. Under Supervision of

Prof. Dr. Ragaa Mahmoud Lasheen

Prof. of Clinical and Chemical Pathology Faculty of Medicine, Ain-Shams University

Dr. Hadia Hussein Bassim

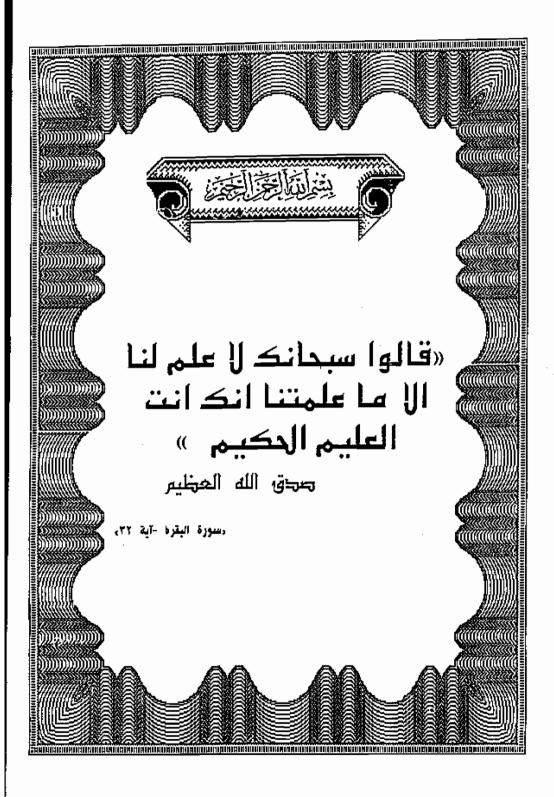
Ass.Prof. of Clinical and Chemical Pathology Faculty of Medicine, Ain-Shams University

Dr. Amira Mohamed Mokhtar

Ass.Prof. of Clinical and Chemical Pathology Faculty of Medicine, Ain-Shams University

Dr. Azza M. Sadek El-Duasoury

Ass.Prof. of Clinical and Chemical Pathology Faculty of Medicine, Ain-Shams University


Dr. Fatma El-Said Metwaly

Lecturer of Clinical and Chemical Pathology Faculty of Medicine, Ain-Shams University

> Faculty of Medicine Ain-Shams University

> > 1997

y shisms

Acknowledgment

I would like to express my sincere gratitude and appreciation to *Prof. Dr. Ragaa Mahmoud Lasheen*, Professor of Clinical Pathology, Faculty of Medicine Ain-Shams University, for giving me the honor to work under her supervision, and for providing me from her vast experience as well as for her utmost care.

I am also grateful to *Dr. Hadia Hussein Bassem*, Assistant Professor of Clinical Pathology, Faculty of Medicine Ain-Shams University, for her meticulous supervision, valuable suggestions and constructive criticism throughout this work.

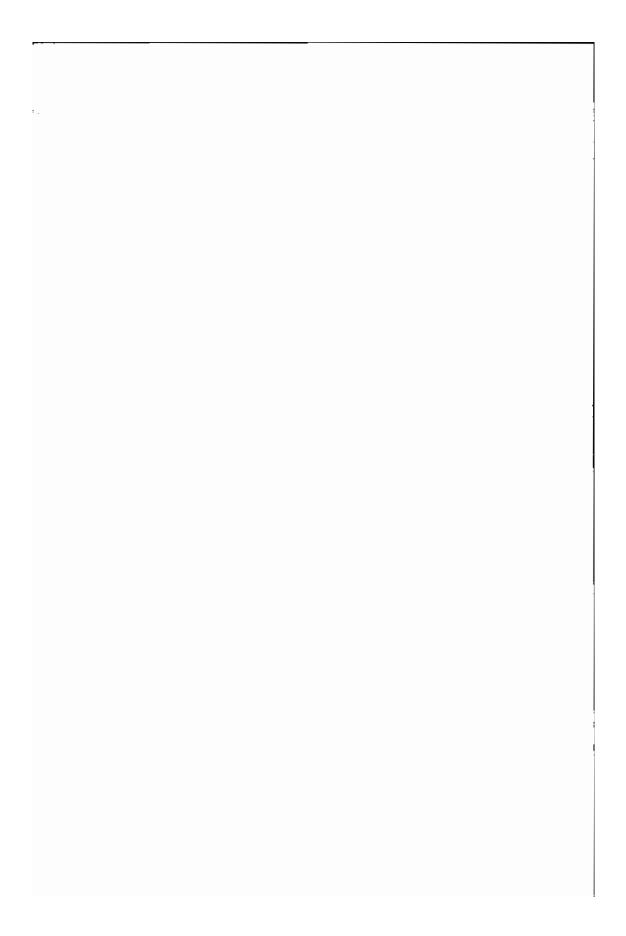
I would like to offer special thanks and appreciation to *Dr. Amira Mohamed Mokhtar*, Assistant Professor of Clinical Pathology, Faculty of Medicine Ain-Shams University, for her constant guidance, close attention, encouragement, and great help she gave to accomplish this work in the proper way.

I do appreciate the kind and active participation of *Dr. Azza M. Sadek El Dnasoury*, Assistant Professor of Clinical Pathology, Faculty of Medicine Ain-Shams University, in the practical part of this work. Her constructive supervision and continuous help allowed this work to emerge in the proper way.

I am also grateful to *Dr. Fatma El-Said Metwaly*, Lecturer of Clinical Pathology, Faculty of Medicine Ain-Shams University, for her help and support during this study.

I would like to convey my warmest gratitude to *Prof. Dr. Sawsan Abdel Moety Fayad*, Professor and Head of Department of Clinical Pathology, Faculty of Medicine Ain-Shams University and to all members of the Clinical Pathology Department.

List of Contents	
•	PAGE
List of tables	i
List of figures	ij
Introduction and Aim of the work	1
Review of literature	5
I-Flow Cytometry	5
Design and operation of flow cytometer.	7
Parameters measurable by flow cytometery.	7
Quality control for clinical flow cytometer.	13
II-DNA of Bacteria	21
Mechanism of staining by fluorescent dyes.	23
Staining and viability	24
Getting dyes into intact cells	25
DNA stains	26
 Quantifying heterogeneity of bacterial cultures by FCM. 	36
III-Flow Cytometric Measurement of Bacteria	43
Specimens for FCM analysis	44
• FCM analysis.	48
I-Bacterial detection.	51
II-Bacterial characterization by flow cytometry	56
* Flow cytometric Gram/viability stain.	58
* Real time cell classification.	60
* Limitations of FCM for the detection of bacteria in mixed populations	61
III-Flow cytometric antibiogram	62
IV-Flow cytometric assessment of bacterial viability	67
IV-Applications of FCM in Microbiology	69
Application of FCM in clinical bacteriology.	70
Application of FCM in Mycology.	76


List of contents (Cont.)	
Uses of FCM in Virology	78
Applications of FCM in Parasitology	85
Materials and Methods	89
Results	104
Case report 1	120
Case report 2	121
Discussion	122
Conclusion	131
Recommendations	132
Summary	133
References	136
Appendix	158
Ârabic summary	181

List of Tables

	Lisi oj Tuvies	
		PAGE
Table 1:	Different cellular parameters measurable by FCM.	11
Table 2:	Some determinants amenable to analysis by FCM.	12
Table 3:	GC% in six different bacterial species.	56
Table 4:	The most common isolates and effective antibiotics in different clinical specimens.	90
Table 5:	Concentrations of stock solutions of different antibiotics.	93
Table 6:	The volume of working solutions of antibiotics containing 5xMIC to be completed to 300µL of the sample	94
Table 7:	Bacterial detection by FCM and culture.	107
Table 8:	Distribution of specimens in the four groups.	107
Table 9:	Data of specimens yielding positive FCM results with negative culture (Group III).	108
Table 10:	Data of specimens yielding negative FCM and positive culture results (Group IV).	109
Table 11:	Antibiotic intake in groups showing discrepancy between FCM and culture results.	109
Table 12:	Distribution of positive cases by FCM and culture in different clinical specimens.	110
Table 13:	Results of antibiotic susceptibility by FCM and disc diffusion method.	111
Table 14:	Data of specimens showing disagreement between disc diffusion and FCM.	111

	:

	List of Figures	
	, 0	PAGE
Figure 1:	Schematic diagram of a flow cytometer	10
	showing the flow cell, excitation light beam,	
	light collection optics, filters and	
	photodetectors.	
Figure 2:	Method one for performance monitoring	16
	using constant instrument settings.	
Figure 3:	Method two for instrument performance	17
	monitoring using constant intensity settings.	
Figure 4:	Two populations of Micrococcus luteus with	39
	low and high autofluorescence.	
Figure 5:	FCM histograms of samples showing	54
	growth.	
Figure 6:	FCM histograms of samples showing no	54
	growth.	
Figure 7:	Hoechst / Chromomycin fluorescence	57
	signatures of bacterial species with different	
	DNA base composition.	
Figure 8:	FCM Gram Viability stain.	59
Figure 9:	Flow cytometric histograms of a positive	100
	sample.	
Figure 10:	Specimen preparation and measurement	103
	procedures.	
Figure 11:	Distribution of specimens according to the	112
	results of FCM and culture.	
Figure 12:	Example of FCM histograms obtained from	113
	positive sample.	
Figure 13:	Example of FCM histograms obtained from	114
	negative sample.	
Figure 14:	Antibiotic intake in groups showing	115
	discrepancy between FCM and culture	
	results.	
Figure 15:	Total positive results by FCM and culture in	116
	different clinical specimens.	

List of figures (Cont.)	
Figure 16: Distribution of groups I, III, and IV in	117
different clinical specimens.	
Figure 17: Example of FCM antibiotic susceptibility	118
histograms.	
Figure 18: Example of FCM antibiotic susceptibility	119
histograms.	
Figure 19: FCM histograms of Case Report 1.	120
Figure 20: FCM histograms of Case Report 2.	121