

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

ELECTRICAL POWER AND MACHINES DEPARTMENT

A DIGITAL PWM INVERTER FOR WIDE SPEED A.C. MOTOR CONTROL

A Thesis Submitted in Fulfilment for the Requirement of the degree of Doctor of Philosophy

(ELECTRICAL POWER AND MACHINE)

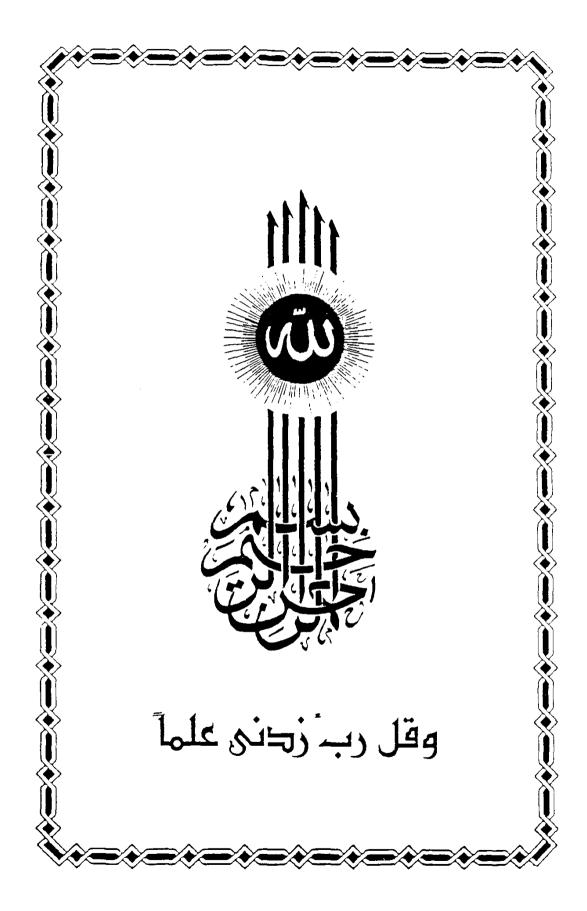
621.3815322 C H \mathbf{BY}

GAMAL MOHAMED HASHEM AHMED

B.Sc. Elect. Eng., Ain Shams University, 1983, M.Sc. Elec. Eng., Ain Shams University, 1988

48532

SUPERVISED BY


Prof. Dr. El Sadik Amin Kandil Prof. Dr. Ahmed Abd El Sattar

Electrical Power and Machines Dept., Faculty of Engineering, Ain Shams University, Cairo, Egypt.

Prof. Dr. Julian Richardson
Electrical Engineering and Electronics Dept.,
Brunel University, U.K.

CAIRO 1993

Digital pulse width modulation (PWM) inverter for A.C. motor speed control is a new and versatile technique that has considerable potential. With powerful microprocessors, an accurate on-line generation of the required switching patterns is attained. There are many switching strategies such as sinusoidal PWM, optimal PWM, and pulse position modulation which can be used to control the low order harmonic content in the inverter output voltage. From these the optimal PWM strategies, which optimizing particular rely on a characteristic of the PWM waveforms, are superior eliminating a pre-defined low order harmonic content in the inverter output voltage at low switching frequencies, compared to other strategies. The main disadvantage associated with the optimal PWM strategies is how to define the initial guesses required for solving the nonlinear harmonic voltage equations to calculate the switching angles.

In this investigation novel expressions are suggested for estimating the initial guesses of the switching angles for the single-phase and the three-phase harmonic elimination method (HEM) pulse width modulation strategy. In order to verify these expressions, complete digital PWM inverter systems were designed and built. The designed algorithm provides for generation of PWM waveforms up to nine chops per quarter cycle.

This allows the elimination of low order harmonics up to the 17'th in the single-phase and up to the 25'th in the three-phase (HEM) pulse width modulation systems.

Another novel expression, which allows the prediction of the magnitude and frequency of the dominant harmonic outside the desired eliminated band of harmonics is suggested. This in turn aids the design optimization of overall inverter systems.

The developed digital technique in this research is original and forms the basis of an effective control method with quality a.c. supply. Also the software control of the drive system includes open-loop and closed-loop operations for a three-phase induction motor.

A comprehensive analysis and evaluation of the (HEM) pulse width modulation strategy are presented with experimental results, which accurately match theoretical predictions.

EXAMINER COMMITTEE

Name, Title and Affiliation

Signature

1 - Prof. Dr. Sabry Abd El-latif Professor, Head of the Dept. of Electrical Power and Machines, Faculty of Engineering, Monofia University, Cairo, Egypt. almy M.

2 - Prof. Dr. Ali Kamel El Kharashy Professor, Dept. of Electrical Power and Machines, Faculty of Engineering, Ain Shams University, Cairo, Egypt. (harash)

3 - Prof. Dr. Julian Richardson
Dept. of Electrical Engineering and Electronics
Brunel University, London, U.K.

4 - Prof. Dr. El-sadik Amin Kandil Professor, Dept. of Electrical Power and Machines, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

El Sade formail

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Doctor of Philosophy in Electrical Engineering. The work included in this thesis was carried out by the author. No part of this thesis has been submitted for a degree or a qualification at other university or institution.

: Gamal Mohamed Hashem Ahmed Name

ACKNOWLEDGEMENT

The author wishes to express his deep and sincere gratitude to his supervisors who are

- 1 Prof. Dr. El Sadik Amin Kandil
- 2 Prof. Dr. Ahmed Abd El Sattar
- 3 Prof. Dr. Julian Richardson

The author wishes to thank all the following names who have helped me during the course of this research

- 1 Dr. Mohamed Kamel Darwish
- 2 Dr. Mostafa Kamel Darwish

The author wishes to thank and acknowledge his wife and his friend Nasser Eid for their continuous encouragement and help.

TABLE OF CONTENTS

LIST OF SYMBOLS, ABBREVIATIONS, AND FIGURES

CHAPTER 1 INTRODUCTION

1.1 Historical development of drive systems1
1.2 The objectives of this investigation3
1.3 Review of switching techniques used in
inverter systems4
1.4 Microprocessor-based PWM techniques7
1.5 Microprocessor selection9
1.6 Switching elements selection10
1.7 The layout of this presentation11
CHAPTER 2 THEORY OF CALCULATION FOR OPTIMAL PWM 13
2.1 Introduction1
2.2 Equations set
2.2.1 Single-phase system1
2.2.2 Three-phase system18
2.3 A numerical method for solving the nonlinear
equations20
2.4 The initial guess problem22
2.5 Solution of equations2

2.6 Programming the numerical procedures25
2.7 Programme solutions29
2.7.1 Single-phase solution29
2.7.2 Three-phase solution
2.8 A comparison between optimal PWM and sinusoidal
naturally-sampled PWM46
CHAPTER 3 MODELLING 53
3.1 Introduction53
3.2 Over view of modelling techniques54
3.3 The modelling process58
3.4 Results of the modelling process61
3.5 Model selection62
CHAPTER 4 SYSTEM DESIGN 72
4.1 Introduction
4.2 Overall system design consideration73
4.3 Programming and control75
4.4 Programme execution timing76
4.5 Assembly programme design78
4.5.1 Frequency consideration81
4.5.2 Voltage / frequency control consideration84
4.5.3 Soft starting induction motor consideration86
4.6 Selection of closed-loop system89

4.7 Closed-loop implementation	}1
4.8 Proportional plus integral controller	€3
4.9 drive design for GTOs	99
4.10 Protection of GTO	101
4.11 Hardware debugging	103
CHAPTER 5 RESULTS	110
5.1 Introduction	110
5.2 Harmonic content in the single-phase PWM inverter	110
5.3 Harmonic content in the three-phase PWM inverter	115
5.4 Induction motor testing	121
5.5 Prediction of harmonic levels in harmonic elimination method PWM strategy	132
CHAPTER 6 CONCLUSIONS	138
FUTURE RESEARCH	142
REFERENCES	144
APPENDIX [A] DERIVATION OF EQUATION (2.1)	149
APPENDIX [B] COMPUTER PROGRAMS	152
B-1 Optimum pulse width modulation package	153
B-2 Sample of results at nine-chops per quarter cycle	160
B-3 Sinusoidal pulse width modulation-natural sampled	
programme	163
B-4 Linear least square estimation programmo	166

APPENDIX	[C]	ASSEMBLER LISTING FOR CONTROL SYSTEM170
APPENDIX	[D]	THREE-PHASE SHIFTER AND COMPLEMENTARY
		SWITCHING FUNCTION GENERATOR176
PUBLICATI	ONS	

LIST OF SYMBOLS

[A]	the partial derivative matrix.
A, B, C	model coefficients in the Least square regression method (in Hexadecimal).
A n	the amplitude of the n'th harmonic.
A	sinusoidal peak value.
s A T	triangle peak value.
D	decimal
ΔM	increment of the modulation index.
d∝;	increment of chop angles.
E or e	error.
F	reference frequency.
r F t	feedback frequency.
F(X)	a single variable function.
F'(X)	the derivative of $F(X)$.
G(s)	open-loop transfer function.
J	moment of inertia, or cost function.
K	number of chops per quarter cycle.
K I	integral controller constant.
K P	proportional controller constant.
M	modulation index.
M	modulation index in the natural sampled
ns	pulse width modulation.
n	harmonic order.
N cycle	number of cycles.

N f	number of frequency change.
P i	the i'th pulse.
R	number of triangles in a cycle.
S	slip.
T st	induction motor starting time.
v	resolved modulation index.
V	the n'th voltage harmonic amplitude.
n Y	observed process output.
Y	output from the modelling process.

GREEK LETTERS

 $\Omega_{\mathsf{S},\mathsf{S}}$

α	chop angle.
ϵ_{l}	tolerance in harmonic voltage.
ϵ_2 .	tolerance in the diagonal elements of matrix [A].
$\Omega_{ m O}$	output speed.
Ω_{r}	reference speed.

LIST OF ABBREVIATIONS

A/D, or ADC	analogue to digital converter.
BTJ	bipolar junction transistor.
EPROM	erasable programmable read only memory.

steady-state speed.

FOLM first order linear model.

GTO gate turn off thyristor.

HEM harmonic elimination method.

IGBT isolated gate bipolar transistor.

MCT MOS-controlled thyristor.

MOSFET metal oxide semiconductor field effect

transistor.

NSPWM natural sampled pulse width modulation.

PPI programmable peripheral interface.

PPM pulse position modulation.

PWM pulse width modulation.

PC programme counter.

P+I proportional plus integral controller.

QSW quasi square wave.

RCD resistance-capacitance-diode.

r.p.m revolution per minute.

RSPWM regular sampled sinusoidal pulse width

modulation.

SDK system design kit.

SOM second order model.

TEXP calculated experimental torque.

THD total harmonic distortion.

TTH calculated theoretical torque.

TTL transistor-transistor-logic.