RESERVOIR EVALUATION OF SOME MIOCENE FORMATIONS IN SHUKHEIR AND KAREEM OIL FIELDS, GULF OF SUEZ, EGYPT

A THESIS

Submitted in Partial Fulfilment for the Requirements of the MASTER DEGREE OF SCIENCE (Geology)

Ву

SALAH EL-DIN ABDEL WAHAB MOHAMED MOUSA

B. Sc. (Hons.)

Department of Geology
Faculty of Science
Ain Shams University
Cairo, A.R.E.

1984

NOTE

The present thesis is submitted from Salah Eldin Abdel Wahab Mohamed Mousa to Ain Shams University in partial fulfilment of the requirements for the Master Degree of Science in Geology.

Beside the research work materialized in this thesis, the candidate has attended nine of the post-graduate courses during one year in the following topics:

- Field Mapping
- Tectonic Position of Egypt
- Laboratory Techniques.
- Structural Geology
- Geotectonics
- Data Processing
- Applied Geophysics
- Potential Theory
- Filtering Techniques.

He has successfully passed the final examination of these courses. In addition, the student has successfully passed the German language examination.

Prof. Dr. Mohamed E. Hilmy

Head, Department of Geology

ACKNOWLEDGEMENTS

The author wishs to express his sincere appreciation to Prof. Dr. Nasser M. Hassan, Geology Department, Faculty of Science, Ain Shams University, and to Dr. Abdel Moktader A. El-Sayed, in the same department for suggesting the problem, supervising the work, offering valuable suggestions during the progress of the investigations and for critical reading of the manuscript.

The author is deeply indebted to the authorities of the the Exploration Department, General Petroleum Company for providing the necessary core samples and logs needed for the present study.

The author also gratefully acknowledges Dr. Fawzy H. Hamza for his help in the environmental biofacies interpretations.

A special appreciation is also expressed to all the staff members of the Geology Department, Ain Shams University for their contineous interest and encouragement.

LIST OF CONTENTS

Chapter No.		Subject	Pag e
AB	STRAC	T	•
٦.	GENE	RAL GEOLOGY	
•		Introduction	
		Stratigraphy	
	<u> </u>	1.2.1. Post Miocene	
		1.2.2. Miocene	
		1.2.2.1. Ras Malaab Group	
		1.2.2.2. Gharandal Group	
		1.2.3. Pre-Miocene	
		1.2.3.1. Eocene	
		1.2.3.2. Paleocene	
		1.2.3.3. Cretaceous System	. 10
		1.2.3.4. Lower Carboniferous	. 11
	1.3.	Structural pattern and tectonics	. 13
	1.4.	Evolution of the Gulf of Suez	. 14
-	T3NYT <i>t</i> T3	DOMNITHING AT A NAT YOUR	
2.		RONMENTAL ANALYSIS	
	-	Introduction	· To
	۷. ۵.	Environment of deposition deduced from the textural parameters for Shukheir Sandstones	1 0
		2.2.1. Grain Size analysis	
		2.2.2. Textural parameters	
	r*		
		2.2.3.1. C-M diagram	
		2.2.3.2. Skewness versus Kurtosis	
		2.2.3.3. Skewness versus inclusive standard	
		deviation	. 28
		2.2.3.4. Mean size vs. inclusive standard	
		deviation	. 28
	2.3.	Environmental interpretation deduced from the bio-	
	- • J •	facies analysis for the Kareem field limestones	. 29
		2.3.1. Introduction	
		2.3.2. Biofacies thin section description	

ha Vo	pter •	<u>Subject</u>	Page
3.	STORA	AGE CAPACITY PROPERTIES	
		Preparation of the studied core samples for the petro-	
		physical measurements	34
	3.2.	Porosity	35
		3.2.1. Definition	36
		3.2.2. Determination of porosity	37
		3.2.3. Statistical analysis of porosity data	40
		3.2.4. Storage capacity	47
		3.2.5. Relation between porosity and grain size para-	
		meters	50
		3.2.5.1. Porosity (\emptyset) vs. mean grain size (Mz)	50
		3.2.5.2. Porosity (\emptyset) vs. formation fines	50
	3.3.	Permeability	52
		3.3.1. Definition	52
		3.3.2. Gas permeability measurements	53
		3.3.3. Statistical analysis of permeability data	54
		3.3.4. Permeability capacity	60
		3.3.5. Relation between the permeability and grain	
		size parameters	60
		3.3.5.1. Permeability (K) vs. mean grain size	<i>c</i> -
		(Mz)	60
		3.3.5.2. Permeability (K) vs. formation fines.	63
		3.3.6. Permeability-porosity cross-plot	63
		Rock density properties	65
		3.4.1. Grain density (\nearrow g)	65
		3,4.1.1. Grain density (P_g) vs. porosity (\emptyset).	66
		3.4.1.2. Grain density (/g) vs. mean grain	
		diameter (Mz)	69
		3.4.2. Bulk density (\nearrow b) vs. porosity (\emptyset)	69
		3.4.2.1. Bulk density (\nearrow b) vs. porosity (\emptyset).	69
		3.4.2.2. Bulk density (\nearrow b) vs. formation fine	
		content ($Clc\%$)	71

ha No	pter •	<u>Subject</u>	Page
4.	PORE	SPACE GEOMETRY AND MORPHOLOGY	
	4.1.	Introduction	72
	4.2.	Insoluble residue technique	74
	4.3.	Thin section petrography	75
	4.4.	Scanning electron microscope (SEM)	77
	4.5.	X-ray diffraction analysis	79
		4.5.1. Procedure	80
		4.5.2. Mineral identification	81
		4.5.3. X-ray peaks intensity measurements, and mineral	
		evaluation	82
·) •	ELECT	PRICAL PROPERTIES OF ROCKS	
	5.1.	Electric resistivity	85
		5.1.1. Electric resistivity measurements of brine satu-	
		rated core samples from Kareem and Shukheir oil	
		fields	86
		5.1.2. Formation resistivity factor of rocks	87
		5.1.3. Formation factor-porosity relation	90
	5.2.	Cation exchange capacity	95
	5.3.	Resistivity index (I) - Water saturation (Sw) relation-	,
		ship	1:00
J	MMARY	AND CONCLUSIONS	106
7	FEREN	CES	112
?	ABIC S	BUMMARY	

LIST OF FIGURES

Fig.		After <u>Page</u>
l.	Location map of Shukheir and Kareem Oil Fields	1
2.	Generalized Geologic column of the Gulf of Suez (After Barakat, 1982)	2
3.	Ideal composite log for Kareem oil field	2
4.	Ideal composite log for Shukheir oil field	2
5•	Correlation chart of Belayim Formation in Shukheir wells, 1, 2 and 4 showing the location of the selected core samples	12
6.	Correlation chart of Nukhul Formation in Kareem wells 6, 9, 10, 11, 14, 21, 25 and 28 showing the location of the selected core samples	12
7.	Normal probability distribution of grain size analysis of the studied Shukheir sandstones	22
8.	C-M plot for the studied sandstone samples of Shukheir oil field	l 28
9.	Bivariant plot of kurtosis vs. skewness after Mason and Folk (1958) for Shukheir rock samples	28
10.	Bivariant plot of skewness vs. inclusive standard deviation after Friedman (1967) and Moiola and Weiser (1968) for Shukheir rock samples	28
11.	Bivariant plot of Mean size vs. inclusive standard deviation after Friedman (1967) and Weiser (1968) for Shukheir sandstone samples	29
12.	Porosity histogram, frequency polygon and cumulative frequency polygon of the studied samples	- 43
L3.	Cumulative frequency distribution of porosity of Kareem field core samples	47
L4.	Cumulative frequency distribution of porosity of Shukheir core samples	47
L5.	Distribution of porosity capacity for core samples of Kareem and Shukeir fields • • • • • • • • • • • • • • • • • • •	47
6 .	Porosity versus the mean grain size of Shukheir samples .	50

Fig. No.		?age
35•	Relationship between formation resistivity factor (F) and porosity (\emptyset) for the studied core samples of Mareem field at different concentrations	91
36.	Relationship between formation resistivity factor (F) and porosity (\emptyset) for the studied Shukheir core samples at different concentrations	91
37.	Logarithm of the apparent formation factor (Fa) versus (Log Rw) ² for the studied Kareem and Shukheir core samples	96
38.	Relationship between the ratio of experimental to extrapolated factor for various values of shaliness factor (b) and water resistivity for the studied samples	99
39.	Relationship between the extrapolated formation resistivity factor and porosity of the studied samples at hypothetical $Rw = 0.01 \text{ ohm.m} \dots \dots \dots \dots \dots$	
40.	Relationship between the resistivity index (I) and the water saturation (Sw) for the studied rock samples	101

LIST OF TABLES

No∙		Pag∈
1.	Mechanical analysis data for the studied Shukheir samples	23
2.	The calculated phi values of the studied Shukheir samples	24
3.	Statistical grain size parameters, for the studied Shukheis samples	
4.	Summary of environmental interpretation by different gra- phical size parameters techniques for Shukheir sandstones	30
5.	Porosity measurement of Kareem field samples	41
6.	Porosity measurement of Shukheir samples	42
7.	Calculation of the standard deviation of porosity data for Nukhul core samples of Kareem field	45
8.	Calculation of the standard deviation of porosity data for the Belayim core samples of Shukheir field	
9.	Calculation of porosity distribution from classified data for the Kareem oil field	48
10.	Calculation of porosity distribution from classified data for the Shukheir oil field	49
11.	Porosity (\emptyset), mean size diameter (Mz), and fine contents (Clc%) values for the studied Belayim sandstone samples	51
12.	Permeability measurements for core samples from Kareem and Shukheir oil fields	55
13.	Statistical analysis of the permeability data for the studied core samples of kareem field	56
14.	Statistical analysis of the permeability data for the studied Shukheir core samples	57
15.	Statistical determination of the standard deviation of permeability data for core samples of Kareem field	61
16.	Statistical determination of the standard deviation of permeability data for Shukheir core samples	- 62
17.	Gas permeability, porosity, mean size diameters and fine content data of Shukheir core samples	64

Table No.		Page
18.	Frequency distribution of the determined grain density values (/g) for core samples of Kareem field	. 67.
19.	Frequency distribution of the determined grain density values (ρ g) for Shukheir core samples	. 67
20.	Measured porosity (\emptyset) , permeability (K) , grain density $(\nearrow g)$, and bulk density $(\nearrow b)$ values for the studied samples	. 68
21.	Frequency distribution of the bulk density values ($^{\circ}$ b) for Kareem field core samples	. 70
22.	Frequency distribution of the bulk density values (/b) for Shukheir core samples	. 70
23.	Insoluble residue results and rock names of the studied Kareem and Shukheir fields core samples	. 76
24.	The percentage of the peak intensities of the studied Belayim , Shukheir samples	. 82
25.	The measured resistivity values of core samples of Kareen field saturated by different NaCl concentrations	
26.	The measured resistivity values of Shukheir core samples saturated by different NaCl concentrations	• 93
27.	Measurements of the shaliness factor (b) of the studied samples of Kareem field	. 97
28.	Measurements of the shaliness factor (b) of the studied Shukheir samples	• 98
29.	Measured resistivity values (R _t) at different water saturtion (Sw) obtained at different regims of the centrifuge for Kareem field limestone samples	
30.	Measured resistivity values (R _t) at different water saturation (Sw) obtained at different regims of the centrifuge for Shukkeir sandstone samples	ra- .104

LIST OF PLATES

Plate No.		After Page
<u>.</u>	The olofacies analysis for the studied limestone samples from Nukhul Formation in Kareem oil field	
2.	Thin section investigation of some sandstone samples obtained from Belayim Formation, in Shukheir oil field .	75
3.	The scanning electron micrographs for some samples in question	77

ABSTRACT

Petrophysical studies on the reservoir rocks play an important role in the discovery, evaluation and distribution of the productive zones. Oil and gas reservoirs exhibit complex variations of reservoir continuity and pore space geometry (porosity and permeability).

The storage capacity properties which affect the ability of a rock to store fluids are porosity, permeability and rock density. These properties are measured directly using different laboratory techniques, or they are evaluated with other tools through their relations such as the formation resistivity factor and resistivity index.

The present study deals with the petrophysical studies on some Miocene rocks from both Kareem and Shukheir oil fields in the Eastern Desert. For such study 29 core samples were selected representing the Miocene sections encountered in 12 wells scattered in both Kareem and Shukheir oil fields. Out of the 29 core samples, only 14 samples are representing Nukhul Formation in the bore holes number 6, 9, 10, 11, 14, 21, 25, 26 and 28 in the Kareem oil field. The rest are comprising the Belayim Formation encountered in the bore holes number 1, 2 and 4 in the Shukheir oil field. These samples were extracted from the residual oil, then; petrophysical and petrographical studies were carried out on them.

The area under study which lies between latitude 28° 00' and 28° 15' N. and longitude 33° 00' and 33° 15' E, was discovered by the General Petroleum Company as a result of geophysical surveying. Kareem and Shukheir oil fields embrace on area of about 7.4 and 54.0 Km² respectively.

The field of study includes the following :

- 1. General geology which include the stratigraphy, structural setting and geologic history of the Gulf of Suez with reference to the area under investigation.
- 2. Environmental analysis based on grain size analysis of Shukheir sandstone samples and biofacies analysis of the Kareem limestones.
- 3. Study of the storage capacity properties including:

 porosity, permeability and density of the rock samples

 and their relationships to the lithologic properties with

 respect to hydrocarbon accumulations and flowing capacity

 of the geologic intervals in question.
- 4. Study of pore geometry and its morphology for the selected samples and their diagenetic effect on the reservoir properties, based on the insoluble residue technique, thin section petrography, scanning electron microscope and X-ray diffraction analysis.
- 5. Study of electrical properties of the rock samples as electrical resistivity, cation exchange capacity and resistivity index, and their relationships to the storage capacity and lithologic properties.