GEOLOGICAL STUDIES ON THE AREA AROUND GEBEL KULYIET, SOUTH EASTERN DESERT

By
ZEINHOM SAYED AHMED EL ALFY
B So in Geology

A THESIS

Submitted in Partial Fulfilment of The Pequirements for the Degree of MASTER OF SCIENCE

in GEOLOGY

Department of Geology
Faculty of Science
Ain Shams University

1986

TO WHOM I AM TAUGHT BY

ACKNOWLEDGEMENTS

The present work is carried out in the Department of Geology, Ain Shams University, for such assistance. The writer wishes to express Deep thank for the staff members, who kindly offered laboratory facilities and unfailing help during the progress of the investigations.

The writer would like to express his deep gratitude to Prof. Dr. M. Y. Meneisy, Geology Department, Ain Shams University, (Now head of Geology Department, Faculty of Science, Gatar University), for his supervision, continuous guidance and fruitful discussions during the progress of this work.

The writer gratefully thanks Dr. Bahay Issawi, The Oil Vice Minster, for his supervision and encouragement.

Grateful thanks are also due to Dr. B. A. El Kaluobi, Geology Department, Ain Shams University, for his direct supervision, help and advice in each stage of the present work.

Chemical analyses were carried out in the laboratory of Institute Mineralogy and Petrology, Mainz University, for such assistance, the writer feels indebted.

The writer wishes to express his deep thanks for the Egyptian Geological Survey and Mineral projects Authority, who provided facilities during field studies.

I am also grateful to geologists Tarek Y. S. and Amr M. S., who typed the manuscript at various stages.

NOTE

The present thesis is submitted to Ain Shams University in partial fulfillment of the requirements for the Degree of Master of Science in Geology.

Besides the research work materialized in this thesis, the Candidate has attended eight grduate courses for one year in the following topics:

- 1. Field geology.
- 2. Laboratory techniques.
- 3. Mineralogy.
- 4. Crystallography.
- 5. Igneous petrology.
- Metamorphic petrology.
 Sedimentary petrology.
- 8. Geochemistry.

He has successfully passed the final examinations in these courses.

In fulfillment of the language requirements of the degree. he has also passed the final examination of a course in Die..sa language.

Pruf. Dr.

Monamed A. Bassyuni Head, Department of Geology

LIST OF CONTENTS

ABSTRACT

CHAPTER I	INTRODUCTION	-
I.1.	Previous Work	÷
1.2.	Scope and Object of the Present Study	
CHAPTER II	GEOLOGIC SETTING	13
II.1.	Volcanogenic Metasedimnts	:5
II.1.1.	Phyllites	18
II.1.2.	Schists	20
II.2.	Metavolcanics and Associated Metapyroclastics	22
II.1.1.	Metapyroclastics	23
11.2.2.	Metatuffs	_ 5
11.2.	Metaandesite	25
11.2.4.	Metadacite-rhypdacite Association	<u></u>
11.2.5.	Metarhyolite	26
11.3.	Metagabbro-dicrite	<u>→</u> 7
II.4.	Syntectonic to Late Tectonic Granodiorite	30
	and Tonalite	
11.5.	Younger Granites	UU
11.5.1.	Seiga Granite	51
11.5.2.	Rulyiet Granite	91
П.б.	Post granitic Dykes and Veins	24.2
Concesso 1	Structura' Features in the Area	: : : :

CHAPTER III	PETROGRAPHY	56
111.1. M	etasediments	36
III.1.1.	Phyllite	<i></i>
III.1.1.1.	Quartz Phyllite	57
III.1.1.2.	Chlorite Phyllite	59
111.1.1.3.	Biotite Phyllite (phyllitic schist:	39
iII.1.2.	Schists	42
111.1.2.1.	Chlorite-biotite Schist	<u>4</u> 3
111.1.2.2.	Quartz-rich Schist	45
III.1.2.3.	quartz-muscovite Schist	45
III.1.2.4.	Mica Schists	45
	A. Biotite Schist	45
	B. Muscovite-biotite Schist	∔ 5
111.1.2.5.	Garnetiferous-mica Schist	50
III.1.2.6.	Amphibole-bearing Schists	50
	A. Chlorite-actinolite Schist	52
	B. Blotite-hornblende Schist	52
	C. Hornblende Schist	53
SOURCE ROCK	KS AND PHYSICAL CONDITION OF METAMORPHISM	56
111.2.	Metavolcanics	58
111.2.1.	Metaandesite	58
111.2.2.	Metadacite-rhyodacite	£. <u>~</u>
111.2.3.	Metarhyolite	63
111.2.3.1.	Porphyritic Metarhyolite	63
111.2.3.2.	Mylonitized Metarhyolite	67
111.2.4.	Metapyroclastics and Tuffs	58
111.3.	Metagabbro-diorite Complex	75
111.4.	Syntectonic Plutonites (Tonalite, Granodicrite)	78
111.4.1.	Tonalite	78
111.4.2.	Granodiorite	56
III.4.3.	Myrmekitic Granodionite	<u> </u>

111.5.	Younger Granitoids	S 3
III.5.1.	Biotite Granite	83
III.5.2.	Muscovite Granite	84
111.6.	Post-Granite Dykes and Veins	86
111.6.1.	Basic Dykes	56
II1.6.2.	Acidic Dykes	S-6
111.6.2.1	. Granophyre	86
III.6.2.2	. Porphyritic Rhyolite	87
III.6.2.	Trachyte	57
CHAPTER IV	GEOCHRONOLOGY OF KULYIET GRANITE	90
Laboratory	Techniques and Results	91
DISCUSSION		91
CHAPTER V	PETROCHEM I STRY	94
V.1.	Petrochemistry of Metavolcanics	95
V.1.1.	Variation in Chemical Composition	102
	The Alkalies-Silica Diagrams	102
	FeO $^{ au}$.MgO Versus SiO $_2$, TiO $_2$ and FeO Diagram	155
	${ m Al}_{2}{ m O}_{3}$ Versus Normative Plagioclase Diagram.	105
	Variation of P ₂ O ₅ Versus TiO ₃ Diagram	106
V, 1, 2.	Ternaly Variation Diagrams	1.6
	The Or-Ab-An Diagram	145
	The Q Or-Ab Diagram	111
	AFM Diagram	111
V.1.3.	Classification of Metavolcanics	111
V.1.4.	Trace Elements	11⊥
V.2.	Petrochemistry of Granites	116
V.2.1.	Chemical Features of The Studied Granites	129

V.2.2.	Magma Type	13∔
	a. Rittmann Suite Index	156
	b. Wright's Alkalinity Ratio	137
	c. K-C-N Ternary Diagram	139
	d. AFM Ternary Diagram	139
V.2.3.	Classification	1.4.4
V.2.4.	Distribution and Behaviour of Trace Elements	14t)
CHAPTER VI	SUMMARY AND CONCLUSION	153
ACQUAINTANC	ESHIP	178
REFERENCES		159

LIST OF FIGURES

Fig.	1	Location map.	2
Fig.	2	Geologic map of the area around Gabal Kulyiet, South Eastern Desert, Egypt.	
Fig.	3	General view of the eastern side of Gabal Kulyiet, and the surrounding low hilly land metasediments and metavolcanics.	3
Fig.	4	Hunting photogeological map (1967).	S
Fig.	5	Metasediments (south of Gabal Seiga) northern part of the area showing marked foliation parallel to bedding.	19
Fig.	6	Sharp contact between granodiorite and meta- sediments north east of Gabal Kulyiet.	19
Fig.	7	General view of strongly sheared and foliated metatuffs.	24
Fig.	. 8a	Mylonitized metarhyolite.	29
Fig.	. Sb	Foliated and folded metarhyolite.	29
Fig	. 9a	Fine grained phyllite consisting of quartz grains and wispy seams of chlorite matrix parallel to a faint foliation, and scattered magnetite. Notice the formation of magnetite. (P.P. Light, *65).	38
		(I.I. Light, Addi.	

Fig.	9b	Fine grained phyllite showing chorite (dark)	
		in parallel and subparallel arrangement with	
		quartz matrix and quartz veinlets. (C,N)	
		Light, >65).	38
Fig.	10	Chlorite phillite with bends of calcite.	
		(C.N. Light 6.3×10).	40
Fig.	11a	Phyllitic schist showing the formation of	
		large biotite crystals in the fine grained	
		phyllitic groundmass. (P.P. Light 4×10).	<u>41</u>
Fig.	11b	The formation of large biotite crystals in	
		the fine grained phyllitic groundmass. (C,N)	
		Light 4×10).	41
Fig.	12a	Chlorite biotite schist consisting of fine	
		grained biotite and chlorite with large	
		spots of biotite flakes. (P.P. Light 4,10).	4.3
Fig.	12b	Chlorite biotite schist consisting of fine	
		grained biotite and chlorite with large	
		spots of biotite flakes. (C.N. Light $4\cdot 10$).	44
Fig.	13	Quartz-rich schist with abundant quartz	
		grains and minor mats of muscovite, flakes of	
		cholrite and calcite crystals that appear	
		between the quartz. (C.N. Light 2.5/6.3).	47
Fig.	14	Quartz muscovite schist showing alternating	
		thin bands of quartz lenticles an fine	
			, -

Fig. 1	15a	Mica schist showing pronounced formation of	
		S planes. (P.P. Light 2.5×6.3).	48
Fig. :	15b	Mica schist showing pronounced formation of	
		S planes. (C.N. Light 2.5×6.3).	48
Fig.	16a	Muscovite biotite schist with formation and	
		rotation of mica flakes that define early s_1	
		and later incipient S_2 . (C.N. Light 2.5.6.3).	∔ 9
Fig. :	16b	Muscovite biotite schist with formation of	
		\mathbf{S}_1 and \mathbf{S}_2 planes. (P.P. Light 2.5x6.3).	49
Fig.	17a	Garnetiferous mica schist showing euhedral	
		garnet crystals with rhombdodecahedral form	
		set in schistose aggregates of biotite and	
		quartz in parallel alignment. (C.N. Light	
		2.5×6.3).	51
Fig.	17b	Garnetiferous mica schist showing garnet	
		crystals with rhombdodecahedral form, bio-	
		tite flakes and quartz grains. (C.N. Light	
		2.5*6.3).	51
Fig.	18a	Biotite hornblende schist showing inter-	
		growth of bioite and hormblende. (P.P. Light	
		2.5×6.3+.	54
Fig.	1 S b	Biotite hornblende schist showing inter-	
		growth of bioite and normalende. (C.N. light	
		೨ 5∗6.3).	5.4

Fig. 1	19a	The development of hornblende in two S directions in hornblende schist. (P.P. Light	
		2.5×6.3).	55
Fig. 1	19b	The development of elongate prismatic hornblende crystals in two S directions in	
		hornblende schist. (C.N. Light 2.5×6.3).	55
Fig.20	0 a	Metaandesite showing partially altered plagicclase phenocrysts embedded in fine	50
		grained groundmass. (P.P. Light 2.5×6.3).	60
Fig. :	20b	Porphyritic metaandesite showing partially altered plagioclase phenocrysts embedded in fine grained groundmass consisting of quartz, plagioclase, chlorite and actinolite. (C.N.	
		Light 2.5×6.3).	60
Fig. :	21	Porphyritic metaandesite showing plagrocrase phenocrysts embedded in fine grained groundmass of quartz, mafics and iron oxides. (F.F.	
		Light 2.5×6.3).	61
Fig.	22	Porphyritic metaandesite showing eunedral twinned plagioclase phenocrysts. (C.N. Light	
		2.5.6.3).	65
Fig.	23	Porphyritic metadacite. (C.N. Light 2.5×6.3).	65
Fig.	24	Showing segregation of quartz and muscovite rich layers. Quartz layers show deformation,	
		and shearing that produce long attenuated	
		lenses. (C.N. Light 2.5×6.3).	66

Fig. 2	5a Quartz-augen porphyromatrix of quartz and 2.5×6.3).	oclast in fine grained muscovite. (P.F. Light	70
Fig. 2	5b Quartz-augen porphyromatrix of quartz and 2.5×6.3).	oclast in fine grained muscovite. (C.N. Light	70
Fig. 2	6a Lapilli tuffs.	(P.P. Light 2.5×6.3).	71
Fig. 2	6b Lapilli tuffs.	(C.N. Light 2.5/6.3).	71
Fig. 2		nts and quartz crystals rained tuffaceous matrix.	72
Fig. 2		nts and quartz crystals rained tuffaceous matrix.	72
Fig. 2	Research very fine metatuffs of ments, iron oxide grafined banded response (P.P. Light 2.5×6.3)	ains enclosed in a very matrix.	73
Fig. 2	28b Fine grained metato quartz laminae. (P.P		73
Fig. 1	29a Lithic and crystal moral igneous phenoc	rysts of feldspars in	-

Fig.	29b	Lithic and crystal metatuffs showing euhed-	
		ral igneous phenocrysts of feldspars in clastic matrix. (C.N. Light 2.5×6.3).	74
Fig.	30a	Metagabbro with plagioclase, hornblende and altered pyroxene. (P.P. Light 2.5×6.3).	77
		ditered pyroxene. Viii Eighe 2.3 0.3.	, ,
Fig.	30b	Metagabbro with plagioclase, hornblende and	
		altered pyroxene. (C.N. Light 2.5×6.3).	77
Fig.	31	Tonalite Consisting of plagioclase, horn-	
		blende and biotite with interstitial quartz.	
		(C.N. Light 2.5×6.3).	79
Fig.	32	Granodiorite consisting of plagioclase,	
		alkali feldspar and deformed quartz with	
		mafics. (C.N. Light 2.5×6.3).	81
Fig.	33	Biotite granite showing deformed quartz and	
		small crystals of kinked plagioclase enclosed	
		in deformed alkali feldspar.	
		(C.N. Light 2.5×6.3).	85
Fig.	34	Muscovite granite showing perthitic texture	
		and deformed quartz, muscovite is found in	
		clusters between the light minerals.	
		(C.N. Light 2.5×6.3).	85
Fig.	35	Diabase showing partially altered plagioclase	
		and chloritized pyroxene with deleritie	
		texture. (C.N. Light 2.5.6.3).	SS