SEDIMENTOLOGICAL AND **GEOPHYSICAL STUDIES OF HELIOPOLIS** BASIN, CAIRO-ISMAILIYA DESERT ROAD, AND THEIR APPLICATIONS

A THESIS

presented in partial fulfilment for the requirements of the degree of

MASTER OF SCIENCE

551.1198 11.N

in

GEOLOGY

By

Hosny Mahmoud Mahmoud Ezz El-Deen

(B.Sc.Geology)

To

Department of geology **Faculty of Science Ain Shams University** CAIRO, EGYPT.

1993

y 43H F

ACKNOWLEDGEMENTS

Professor Dr. Soliman Mahmoud Soliman, Department of Geology, Faculty of Sciences, Ain Shams University, Cairo, Egypt, supervised all steps of this research. He corrected and revised all maps and studies in the work. Interpretations, writing and revision of manuscripts have been carried out under his sincere guidance and intimate help.

Professor Dr.Sami Soliman Mohamed, Head of Geophysics Department, Desert Research Center, Cairo, Egypt, suggested, planned and supervised all steps of this research. Geophysical field work and its interpretation have been done under his intimate guidance.

Thanks are offered to Dr. Boussina Mohamed Mousa, Department of Geology, Desert Research Center, for her help in reading and revising the petrographic part in the thesis. She shared in the field trips to collect the surface sections samples and also for her help in defining the mineralogy associations.

Deep thanks are offered to Prof. Dr. Said Atwa, Head of Hydrochemistry department, Desert Research Centre, for his help in reading and revising the hydrochemical part of the work. Also thanks are offered for Dr.Abdel Motaal, Hydrogeology Department, Desert Research Centre, for his help in reading and revising the hydrogeologic part in the thesis, and for the staff of the Geochemistry Department, Desert Research Centre, for their help in chemical analyses for the water samples.

To my parents, much gratitude is offered for their intimate parental attitude and their encouragement to finish this research. Also my deep thanks are offered to my wife for her continuous help and sympathy as well as my son and my daughter.

My thanks are also offered to all who have helped directly or indirectly during the progress of the present work and during its final compilation.

"NOTE"

The present thesis is submitted to the Faculty of Science, Ain Shams University in partial fulfilment of the requirements for the degree of Master of Science in Geology.

Besides the research work materialized in this thesis, the candidate has attended ten post-graduate course for one year in the following topics:

- 1- Field Geology
- 2- Statistics
- 3- Electric Method
- 4- Potential Theory
- 5- Gravity
- 6- Magnetic
- 7- Sedimentary Basins
- 8- Basement Rocks
- 9- Structural Geology
- 10- Geotectonic

He has successfully passed the final examination in these courses. In fulfilment of the language requirement of the degree, he has also, passed the final examination of a course in the English Language.

Prof.Dr.W.Moreos

Head of Geology Department

ABSTRACT

The present work deals with the application of the sedimentological and geophysical studies on the area east of the Nile Delta (Heliopolis basin), Cairo-Ismailiya desert road. The area under investigation, extends from El Dibba ridge (South) to El Hamza ridge (North), and from the wadi El Gafra and wadi Moftah (East) to El Khanka and Gebel El Asfar area (West). The area occupies a portion of a semi-arid to arid belt and is characterized by mild climatic conditions, low topography and relief. Physiographically, it displays both local and semiregional landforms.

For the present work intense geologic field work and geologic maps of the area are used to make a compiled geological and geotopographic maps. Drilling samples, geophysical survey and water samples have been applied and interpreted.

The area is highly affected by faults, and a few folds. The main trends of these faults are NW-SE and NE-SW.

Samples from 4 drilled wells and 2 surface sections were collected and described. These samples were mechanically analyzed for correlation and construction of panel diagram. The size distribution are plotted on graphs and the size parameters are considered with respect to two main idea, in order to ensure better inferences and interpretations. Other patterns for environmental implication are considered.

Generally, the mean size values range from granules to medium sand-sizes and generally decrease westward. The standard deviation values range from moderately to poorly sorted.

Mineralogically, all samples were analyzed for the light and heavy minerals. From the analyses, the concentration of the stable minerals in the Miocene deposits indicates mineralogic maturity.

The vertical frequency distribution of minerals in the Miocene section shows percentage decrease upward reflecting the change of current velocity during sedimentation.

The geophysical data obtained from the Vertical Electrical Sounding (VESes) are interpreted to make geo-electric profiles. From the geo-electric profiles, three litho-resistivity zones were defined. These are: Litho-resistivity zone "A" (0.32-4.05m thick) with resistivity values (12-910 Ohm.m), litho-resistivity zone "B" (60-168m thick) with resistivity values (5.6-560 Ohm.m) and litho-resistivity zone "C", water-bearing formation with resistivity values (<5-32 Ohm.m).

Generally, the resistivity values decrease to the west of the area due to change in facies of the sedimentary deposits, and decrease from zone "B" to zone "C" due to the presence of water in zone "C".

From the hydrogeological and hydrochemical studies two main aquifers can be differentiated the area, the Pleistocene aquifer and Miocene aquifer.

The Pleistocene aquifer represents the main aquifer in the western part of the area. It is composed of graded sands and gravels with clay intercalations. The total salinity of the water ranges between 452 mg/l and 1856 mg/l . and the chemical water types are sodium-bicarbonate and sodium-chloride.

The Miocene aquifer represents the main aquifer in the eastern part of the area. It is composed of sand, gravels, limestone interbeds and clay intercalation with lateral and vertical facies changes. The total salinity of the water varies from 4014 mg/l to 7498 mg/l. The chemical water type is Sodium-Chloride.

The groundwater movement of the Miocene water aquifer is from SE to NW direction. The hydraulic gradient is gentle ranging between 1.02×10^{-4} and 1.6×10^{-4} .

The Pleistocene aquifer ground water can be used for irrigation. For domestic purposes, these waters range between the permissible and doubtful limits for human uses, while the ground water of Miocene aquifer is unsuitable for either irrigation under ordinary conditions or domestic uses.

() ·

TABLES OF CONTENTS

	Page
ACKNOWLEDGEMENTS	,
ABSTRACT	
CHAPTER 1 "INTRODUCTION"	
TOPOGRAPHY	3
CLIMATE	3
Climatic zones	:5
Relative humidity	g
PREVIOUS WORK	10
AIM OF WORK	13
CHAPTER 2 "METHODS OF WORK"	
FIELD METHODS	14
Geologic Field Work	14
Geo-electric Survey	14
Well Sampling, Lithic Logs	17
Water Samples	17
LABORATORY METHODS	17
Description of Samples	17
Size Analysis	18
Heavy Minerals Analysis	21
Water Analysis	21
CHAPTER 3 "GENERAL GEOLOGY"	
GEOMORPHOLOGY	22
General Outline	22
LANDFORMS	23
Local Landforms	53
High land	53
Structural Ridges	53
Low land	25
Degradation Landforms	25
i- Morphotectonic depression	25
ii- Drainage lines	28
Semi-Regional Landforms	31
High Land	31
a- Ataqa - El-Mokattam plateau	31
b- Structural ridge	31
Low Land	35
a- Degradational landforms	32
b- Aggradational landforms	32 32
GEOLOGIC SETTING	32 32
General Outline	3⊈ 34
Stratigraphy and Lithology	34
Tertiary Rocks Eocene Rocks	34
Oligocene Rocks	36
Miocene Rocks	36
Pliocene Rocks	36
Quaternary Deposits	37
Geologic Structure	38

(<u>L</u>1)

CHAPTER 4 "FETROGRAPHY"
Samples description
Drilled Well E 1
Drilled Well E 2
Drilled Well MM
Orilled well F 81
Surface section I
Surface section 11
Lithic Description
Lithic cross-section (A-B)
Lithic cross-section (C-D)
Panel diagram
Grain size analysis
·
General outline
Size Parameters (Folk and Ward)
1- Mean size
2- Sorting
3- Skewness
4- Kurtosis
Interrelationships of size parameters
1- Mean Size Versus Standared deviation, Skewness and
kurtosis
2- Standared deviation Versus Skewness and Kurtosis .
3- Skewness versus Kurtosis
Tentative environmental Patterns
a- Passega's Diagrams
b- Other Graphics
Summary and Main Conclusions
Sedimentary Mineralogy
Light Minerals
Opaque Minerals
Non-OpaqueMinerals
Summary and Conclusions
CHAPTER 5 "GEO-ELECTRICAL STUDIES"
Grid Pattern
Interpretation methods of field
1- Qualitative interpretation
2- Quantitative interpretation
a- Manual interpretation method
b- Computer interpretation
Geo-electrical cross sections
Summary and Conclusions
CHAPTER 6 "HYDROGEOLOGICAL ASPECT"
A- Hydrogeology
General Outline
Aquifer characteristics
Hydrodeological cross sections

Ciii)

B- Ground Water Quality
Chemical Characteristics
I - Total Salinity
II- Ion Dominance
III→ Ion Ratios
Water quality Classification
a- Semi-logarithmic Diagram
b- Trilinear Diagram
c- Solin's Diagram
Origin of Salinity
Evaluation of groundwater
Summary and Conclusions
"SUMMARY AND MAIN CONCLUSIONS"
"References Cited"

APPENDICES

APPENDIX I
APPENDIX II
ARABIC SUMMARY

(iv)

LIST OF ILLUSTRATION

I- Figure N	٥ .	Pag
1	Location map of the study area	
2	Relief map of the studied area, Heliopolis	
	basin, Cairo-Ismailiya desert road, Egypt	
	(Topographic map of Cairo (1983))	
3	Diagram indicating possible climatic	
	boundaries of morphogenetic regions (Using	
	Peltiar's diagram, 1950), Heliopolis basin,	
	Cairo-Ismailiya desert road, Egypt	
4	Average rainfall map 1978-1988	
5	Schlumberger electrode configurations (After	
,	Zabarovsky, 1958)	1
6	Geomorphological map, Heliopolis basin, East	•
U	of Cairo, Egypt (After El Shazly, 1975)	2
7	General drainge map, Heliopolis basin, Cairo-	_
7		
	Ismailiya desert road, Egypt (Topographic map	2
0	of Cairo (1983))	ے
8	El Khanka sand dunes of star type, Heliopolis	^,
<i>c</i> .	basin Cairo-Ismailiya desert road, Egypt	2
9	Rose diagrams presentation for the drainge	
	pattern lineation (A) and faults (B),	
	Heliopolis basin, Cairo - Ismailiya desert	.~
	road, Egypt	3
10	Compiled geological map, Heliopolis basin,	
	Cairo-Ismailiya desert road, Egypt (After	
	Sadek (1968); El Shazly a.o. (1975); and	_
	Geological map of Cairo (1983))	3
11	Idealized compiled stratigraphic columnar	
	section, Heliopolis basin, East of Cairo,	
	Egypt	3
12	Compiled structure map, Heliopolis basin,	
	Cairo - Ismailiya desert road, Egypt (After	
	Sadek (1968); El Fayoumy (1968); El Shazly a.o.	
	(1975); and Geological map of Cairo (1983)).	3
13	Location of 4 Well (F81, E1, E2, and MM), and 2	
	Surface sections (I and II); and direction of	
	cross - sections, Heliopolis basin, Cairo-	
	Ismailiya desert road, Egypt	3
14	Lithic cross=section, profile A = B, showing	
	facies change of Miocene deposits, Heliopolis	
	basin area, East of Cairo, Egypt	5
15	Lithic cross-section, profile C - D, showing	
	facies change of Miocene deposits, Heliopolis	
	basin area, East of Cairo, Egypt	G
16	Panel diagram showing faceis changes of Miocene	
	deposits, Heliopolis basin, Cairo - Ismailiya	
	desert road, Egypt	5
17	Graphical representation of Mean size,	
	Standard deviation, Skewness and Kurtosis for	
	Well F 81, Heliopolis basin, Cairo-Ismailiya	
	descrit road Friend	65

Figure	No.	Page
18	Graphical representation of Mean size, Standard deviation, Skewness and Kurtosis for Well E 1, Heliopolis basin, Cairo-Ismailiya desert road,	
19	Egypt	60
	Egypt	61
20	Graphical representation of Mean size, Standard deviation, Skewness and Kurtosis for Well MM, Heilopolis basin, Cairo-Ismailiya desert road,	
21	Egypt Graphical representation of Mean size, Standard deviation, Skewness and Kurtosis for Surface section I, Heliopolis basin, Cairo-Ismailiya	62
22	desert road, Egypt	63
23	desert road, Egypt Scatter plot diagrams of Mean size versus Standard deviation, Skewness and kurtosis for	64
24	Well F81, Heliopolis basin, Cairo-Ismailiya desert road, Egypt	67
25	Well MM, Heliopolis basin, Cairo - Ismailiya desert road, Egypt	68
26	Well E1, Heliopolis basin, Cairo - Ismailiya desert road, Egypt	69
27	Well E2, Heliopolis basin, Cairo - Ismailiya desert road, Egypt	70
28	Cairo-Ismailiya desert road, Egypt	71
29	Egypt	73
30	Heliopolis basin, Cairo-Ismailiya desert road, Egypt	74
	Heliopolis basin, Cairo-Ismailiya desert road,	75

Figure	No.	Page
31	Scatter plot diagrams of Skewness versus	
	Kurtosis for Well F81 and Well MM, Heliopolis	
	basin, Cairo-Ismailiya desert road, Egypt	76
32	Scatter plot diagrams of Skewness versus	
	Kurtosis for Well E1 and Well E2, Heliopolis	
	basin, Cairo-Ismailiya desert road, Egypt	77
33	Scatter plot diagrams of Skewness versus	
	Kurtosis for surface sections I and II,	
	Heliopolis basin, Cairo-Ismailiya desert road,	
	Egypt	78
34	CM diagrams of Well F81 and Well MM, Heliopolis	
200	basin, Cairo-Ismailiya desert road, Egypt	80
35	CM diagrams of Well E1 and E2, Heliopolis basin,	-54
~~	Cairo-Ismailiya desert road, Egypt	81
36	CM diagrams of surface sections I and II,	
	Heliopolis basin, Cairo-Ismailiya desert road,	88
37	Egypt	85
3/	Bivariant plot of Skewness(SK $_{ m I}$) versus Inclusive	
	Standard deviation (📆) (Friedman, 1967) for	
	Heliopolis Basin in wells F81, MM , E1, and E2,	
	Cairo-Ismailiya desert road, Egypt	84
38	Bivariant plot of Kurtosis (KG') versus Skewness	
	(SK _I) (Moiala and Weiser, 1968) for Heliopolis	
	basin in wells F81, MM, E1, and E2, Cairo-Ismailiya	
	desert road, Egypt	85
39	Bivariant plot of Skewness(SK _T)versus Mean size	
	(Mz)(Moiala and Weiser,1968) for Heliopolis basin	
	in wells F81, MM, E1 and E2, Cairo-Ismailiya desert	
	road, Egypt	86
40	Birvariant plot of Mean size (Mz)versus Inclusive	
	Standard deviation (61)(Friedman, 1961; Moiala	
	and Weiser, 1968) for Heliopolis basin in wells F81,	
	MM, E1 and E2, Cairo - Ismailiya desert road,	
	Egypt	87
41	Composite Quartz grain, normal Quartz and unduluse	•
	Quartz, well MM, depth (108-110 m)	92
42	Orthoclase with simple twinning, faint color and	
	traced cleavage, well E2, depth (140-142 m)	92
43	Microcline with inclusion and cross - hatching	
	structure, well F81, depth (58-60 m)	93
44	Graphical representation of main heavy and light	
	minerals in well E2, Heliopolis basin, Cairo-	
4 ==	Ismailiya desert road, Egypt	94
45	Graphical representation of main heavy and light	
	minerals in well MM, Heliopolis basin, Cairo-	
4	Ismailiya desert road, Egypt	95
46	Graphical representation of main heavy and light	
	minerals in well E1, Heliopolis basin, Cairo-	Čić:
	Ismailiya desert road, Egypt	96

(vii)

		Page
47	Graphical representation of main heavy and light	
	minerals in well F81, Heliopolis basin, Cairo-	0.7
48	Ismailiya desert road, Egypt	97
40	(100-102m)	ģģ
49	Chert fragment with inclusion, well F81, depth	
-1.5	(52-54m)	100
50	Rutile with reddish-brown, rod-shaped, well F81,	_
	depth (26-28)	103
51	Zircon with bipyramidal termination and with	
	inclusion well E2, depth (4-6 m)	103
52	Kyanite with stepped-shaped (plane light) well E2	
F-2	depth (116-118 m)	104
53	Kyanite with stepped-shaped well F81, depth (42-44 m)	104
54	Staurolite with golden yellow and fractures, well	104
J.	E2 depth (48-50 m)	107
55	Enstatite with faint color and traced cleavage,	
	well F81, depth (26-28 m)	107
56	Hornblende with two sets of cleavage well E2,	
	A- plane light , depth (18-20 m)	
	B- cross-nickel, depth (18-20 m)	
	C- cross-nickel, depth (140-142 m)	109
57	Biotite with pale brown, and characteristic haloes	
58	well MM, depth (108-110 m)	111
36	Grid pattern location of VES stations, geo- electric profiles and wells, Heliopolis basin	
	area, East of Cairo, Egypt	116
59	Areal distribution curves chart, Heliopolis basin	
	area East of Cairo, Egypt	118
60	Iso - transversal resistivity contour map of zone	
	"A", Heliopolis basin, Cairo-Ismailiya desert road,	
ere a	Egypt	124
61	Isopach map of litho-resistivity zone (Zone "A"),	
	Heliopolis basin, Cairo-Ismailiya desert road, Egypt	125
62	Iso-transversal resistance contour map of zone	123
<u> </u>	"B", Heliopolis basin, Cairo-Ismailiya desert	
	road, Egypt	129
63	Isopach map of litho-resistivity zone (zone "B"),	
	Heliopolis basin, Cairo-Ismailiya desert road,	
	Egypt	130
64	Iso-resistivity contour map of water bearing	
	formation (zone "c"), Heliopolis basin, Cairo-	4 ~~
65	Ismailiya desert road, Egypt	132
uo	Geoelectrical cross sections along profiles A-A, B-B and C-C, Heliopolis basin, Cairo-Ismailiya	
	desert road. Faynt	135

(viii)

Figure		Page
66	Geoelectrical cross section along profiles A-C,	
	and D - D, Heliopolis basin area, Cairo-Ismailiya	
	desert road, Egypt	136
67	Geoelectrical cross section along profiles E - E,	
	and A - C, Heliopolis basin area, Cairo-Ismailiya	
	desert road, Egypt	137
68	Panel diagram of "Litho-resistivity zones",	
	Heliopolis basin, Cairo-Ismailiya desert road,	
	Egypt	138
69	A map showing the location of the sampled water	
	points and hydrogeological cross sections in the	
	area, Heliopolis basin, Cairo-Ismailiya desert	4.40
70	road, Egypt	146
70	Hydrogeological cross sections A - A' and B - B',	
	Heliopolis basin, Cairo-Ismailiya desert road,	4.40
74	Egypt	148
71	Heliopolis basin, Cairo-Ismailiya desert road,	
		149
72	Egypt	143
12	different aquifers in the area and its vicinities	
	based on well data, Heliopolis basin, East of	
	Cairo, Egypt	150
73	Water table contour map for Miocene aquifer in	130
, 3	the area based on well data, Heliopolis basin,	
	Cairo- Ismailiya desert road, Egypt	156
74	Salinity contour map for Miocene aquifer,	1.00
	Heliopolois basin, Cairo-Ismailiya desert road,	
	Egypt	158
75	Relation between E.C versus T.D.S, Heliopolis	
	basin, Cairo-Ismailiya desert road, Egypt	161
76	Bar graph representation of the Pleistocene	
	aquifer water samples and surface water samples,	
	Heliopolis basin, Cairo-Ismailiya desert road,	
	Egypt	164
77	Bar graph representation of the Miocene aquifer	
	water samples, Heliopolis basin, Cairo-Ismailiya	
	desert road, Egypt	165
78	Semi - logarithmic comparative graph of water	
	samples collected from Pleistocene aquifer,	
	Heliopolis basin, Cairo - Ismailiya desert road,	4700
70	Egypt	172
79	Semi - logarithmic comparative graph of water	
	samples collected from Miocene (pattern (A)),	
	Heliopolis basin, Cairo-Ismailiya desert road,	173
ÓΔ	Egypt	173
80	Semi - logarithmic comparative graph of water	
	samples collected from Miocene (pattern (B)), Heliopolis Basin, Cairo-Ismailiya desert road,	
	Eqypt	174
81	Trilinear diagram for groundwater samples of	114
01	Heliopolis basin, Cairo-Ismailiya desert road,	
	Egypt	175