
RESISTANCE TO FENITROTHION IN HOUSEFLY STRAINS OF DIFFERENT ORIGIN

A THESIS

Submitted in Partial Fulfilment of the Requirement for the Award of the Degree of MASTER OF SCIENCE

Ву

THORAYIA FAHIM KOTB EL NAGAR

B. Sc.

Department of Entomology
Faculty of Science
Ain Shams University
Cairo

1986

3

THESIS EXAMINATION COMMITTEE

TAKE	TITLE	SIGNATURE

		ع موشینی ۔ در در در در در در

COURSES STUDIED BY THE CANDIDATE IN THE PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

M. SC. DEGREE

Language : German, M. Sc. Course .

Examination passed on : March, 1983 .

Entomology Courses:

- 1. New approaches to insect control .
- 2. Population dynamics and insect problem .
- 3. Pollution .
- 4. Microbiology .
- 5. Radiobiology .
- 6. Hormones and Phermones .
- 7. Chemistry of insecticides .
- 8. Taxonomy .
- 9. Research subject .

Examination passed on : February, 1983 .

Statistical Course : Biostatistics .

Examination passed on : February, 1983

SUPERVISORS

Prof. Dr. A. M. Guneidy

Prof. Dr. Naima A. Abdel-Razik

Prof. Dr. M. S. Hamed

HEAD OF DEPARTMENT

Prof. Dr. H. A. Abdel-Rahman

ACKNOWLEDGEMENT

The author wishes to express her sincere thanks and appreciation to Professor A. M. Guneidy, Professor of Entomology and Vice-Dean, Faculty of Science, University of Ain-Shams, for suggesting the problem and for direct super-vision of this work. His valuable advice, his kind encouragement, reading and correcting the manuscript is very much appreciated.

Thanks are also due to Dr. Naima A. Abdel-Razik ,
Professor of Entomolgy, Faculty of Science, University of
Ain-Shams, for her consistent help and criticism throughout
this work .

The author is indebted to Professor M. S. Hamed, from the Department of Entomology for his supervision, useful advice and interest in the progress of the study.

Deep appreciation is also expressed to my colleagues in the Department of Entomology, Faculty of Science, University of Ain-Shams, for the facilities and cooperation they offered during the course of this investigation .

CONTENTS

	Page
I. INTRODUCTION.	1
II. LITERATURE REVIEW.	4
(1) Maintenance of Gulture	4
(2) Toxicology Measurements.	6
1) Resistance spectra of the resistant	
strains to various insecticides	6
(3) Genetics of Resistance to Insecticides	2 8
1) Mode of Inheritance	2 8
2) Biochemical Genetics.	41
III. MATERIALS AND METHODS	52
(1) Maintenance of Culture.	52
1) Origin of strains	52
a. Resistant strains	52
1. Rothemsted strein (Rfn.)	52
2. G-strain (R _{mal.})	52
b. Susceptible strain	53
2) Rearing in the laboratory	5 3
(2) Toxicology Measurements	54
1) Procedure of insecticidal tests on	
Musca domestica L	54
2) Statistical treatment of the data	55
3) Selection of the laboratory resistant	
straing, war	56

	Page
4) Resistance spectra of the resistant	
strains to various insecticides	57
5) Insecticides used	5 8
a. Chemical formulae and structures	5 8
(i) Chlorinated hydrocarbons	5 8
(ii) Organophosphates	5 9
(iii) Carbamates	60
(iiii) Pyrethroids.	60
b. Preparation of insecticide	
concentrations	61
(3) Genetics of resistance to insecticides	61
1) Factorial analysis.	61
2) Biochemical genetics	66
a. Crossing experiments.	66
b. Determination of cholinesterase and	
Ali-esterase activities	67
IV. RESULTS AND DISCUSSION.	69
(1) Toxicology Measurements.	69
1) The response of susceptible and	
resistant strains of <u>Musca domestica</u> L.	
to femitrothion.	69
2) Development and reversion of resistance	
to fenitrothion in adult females of	
Musca domestica L. from the two	
resistant strains	73

			Page
		a. Development and reversion of	
		resistance in the Rothamsted strain	74
		(i) Pressure	74
		(ii) Relaxation	76
		b. Development and reversion of	
		resistance in the G-strain	76
		(i) Pressure.	7 6
		(ii) Relaxation.	78
	3)	Resistance spectra of the resistant	
		strains to various insecticides	84
		a. Fenitrothion-resistant strain	•
		(Rothamsted strain)	84
		b. Malathion-resistant strain	
		(G-strain).	94
(2)	Ges	netics of resistance to fenitrothion in	
	the	e housefly, Musca domestica L	98
	1)	Inheritance of femitrothion-resistance	
		in the Rothamsted strain,	9 8
		a. Tests with parent colonies	9 8
		b. Direct crosses and progeny	100
		c. Direct backcrosses	l04
		(i) Backcrosses to susceptible	
		parents,	LO4
		(ii) Backcrosses to resistant	
		parents.	.06

			Page
	đ.	Backcrosses with selection.	108
		(i) To susceptible parent.	108
		(ii) To resistant parent	109
2)	In	heritance of fenitrothion-resistance	
	in	the G-strain.	117
	a.	Tests with parent colonies.	117
	ъ.	Direct crosses and progeny.	117
	c.	Direct backcrosses	124
		(1) Backcrosses to susceptible	
		parents.	124
		(ii) Backcrosses to resistant	
		parents,	126
	đ.	Backcrosses with selection.	126
		(i) To susceptible parent.	12 8
		(ii) To resistant parent.	128
3)	Bio	Schemical Genetics.	133
	8.	Ali-esterase activity with crossing	
		experiments.	133
		(i) In the Rothamsted strain.	133
		(ii) In the G-strain.	136
	b .	Cholinesterase activity with	
		crossing experiments.	142
		(1) In the Rothamsted strain-	142
		(ii) In the G-strain-	142

	Page
V. SUMMARY	147
VI. LITERATURE CITED	154
VII. ARABIC SUMMARY.	

INTRODUCTION

I. INTRODUCTION

The wide usage of organic insecticides has resulted in the appearance of resistance in many insects of medical importance including cockroaches, houseflies, mosquitoes, lice, ticks, and others. The appearance of insecticide resistance is one of the most serious problems in applied entomology.

The enormous practical importance of the problems of insecticide resistance from agricultural and public health stand-points has stimulated a large volume of useful research on the mode of action of insecticides, and insects resistant to pesticides have become valuable research implements for such investigation.

Insects respond differentially to toxicants. Much of this variation is genetically determined and is undoubtedly of considerable adaptive significance as it enables insect populations to respond more flexibly to variations in environmental conditions. Many of the mechanisms responsible for this variation involve enzymes which metabolize synthetic insecticides introduced by man in the insect environment.

There is today considerable awareness of the genetics of resistance, hence, biochemical diversity in insect populations with their response to chemicals. This awareness has placed the studies of resistance in proper perspective and has been largely responsible for the advances achieved in recent years. Therefore, a knowledge of the type of

inheritance of resistance to a certain insecticide may offer valuable information in the search of the physiological basis of resistance mechanism. Furthermore, predication or interpretation of rates of development or reversion of resistance are untenable without an understanding of the mode of inheritance of the resistance characters. From a more practical standpoint, knowledge of the phenotypes response of the various genotypes to a certain insecticide permits a quantitative analysis of the relative frequency of the genes for resistance prior to or during the course of control operations.

The housefly, <u>Musca domestica</u>, is the most extensively reported species shown as being able to develop resistance to chemicals of different groups. Agricultural control operations, the sprays for malaria control and sporadic use of insecticides contributed to the fast development of resistance to insecticides in this insect.

Many hundreds of organic phosphorus compounds have been synthesized which possess insecticidal properties. Yet it is generally considered that despite their very considerable diversity of structure, they all possess a common mode of action; i.e., the inactivation of cholinesterase and other hydrolytic enzymes.

The present work is an attempt to study the mode of inheritance of resistance in this insect to the organophosphate, femitrothion. The activities of cholinesterases and ali-esterases in OP-resistant and susceptible strains of

the housefly, <u>Musca domestica</u>, and in hybrids and different genetypes derived from the different genetic crosses between them were assayed, in an attempt to find out whether the factor for resistance to organophosphates and low aliesterases are related.

Attempts were also carried out to study the pattern of resistance spectrum to various insecticides in QP-resistant houseflies.

LITE