DEVELOPMENT OF EMISSION SPECTROMETRIC METHOD FOR THE DETERMINATION OF RARE EARTH ELEMENTS IN BLACK SANDS

530 5.A:

Thesis

Submitted for degree of master of science

(Physics)

رمانغ

by

Samira Abd El Mongy Ahmed

Supervising committee

Prof. Dr. A. B. El-Bialy

Head of Physics Department
Faculty of Girls for Art, Science
and Education,

Ain Shams University

Prof. Dr. M. A. Ei

Spectroscopy Departme

Physics Division

National Research Centre

Dr. Zeinab El-Sayed Abd El-Aziz

Assistant Prof. Spectroscopy Department - Physics Division National Research Centre

1995

Ain Shams University

Faculty of Girls

For Art, Science and Education

Name of Student

: Samira Abd El Mongy Ahmed

Title of Thesis

: Development of Emission Spectrometric

Method for the Determination

of Rare Earth Elements in Black Sands

A.B. & QBialy

zanab Abdel 139

Supervising Committee

* Prof. Dr. A. B. El-Bialy

Head of Physics Department - Faculty of Girls for Art, Science and Education, Ain Shams University

* Prof. Dr. M. A. Eid

Molamo F Spectroscopy Department - Physics Division

National Research Centre

* Dr. Zeinab El-Sayed Abd El-Aziz

Assistant Prof. Spectroscopy Department - Physics Division

National Research Centre

Approval Stamp:

Date of Approval / /199

Approval of Faculty Council

Approval of University Council

Name of Student : Samira Abd El Mongy Ahmed

Scientific Degree : Bachelor of Science

Department : Physics

Name of Faculty : Faculty of Girls

University : Ain Shams

Graduation Date : May 1990

Academic Scholarship :

ACKNOWLEDGEMENT

Thanks to God for helping me to complete this work.

I would like to express my sincere thanks to those who supervised my work:

1) Prof. Dr. Aida El Bioly

Head of Physics Department, Faculty of Girls for Art, Science and Education, Ain Shams University.

2) Prof. Dr. Mohamed A. Eid.

Spectroscopy Department, Physics Division, National Research Centre.

3) Dr. Zeinal: El Sayed

Spectroscopy Department, Physics Division, National Research Centre.

I am also indebted to Dr. Ahmed Mahdy, Physics Department, Al-Azhar University, for valuable discussions during the progress of this work.

I would like to extend my gratitude to the following authorities:

- 1) Physics Department, Faculty of Girls for Art, Science and Education, Ain Shams University.
- 2) National Research Centre.

CONTENT

	Page
LIST OF TABLES	
LIST OF FIGURES	
ABSTRACT	i
SUMMARY	
CHAPTER I	
INTRODUCTION	1
Aim of the Present Work	4
CHAPTER II	
REVIEW ON PLASMA SOURCES AND THEIR APPLICATIONS	
FOR THE DETERMINATION OF REE IN DIFFERENT	
MATERIALS	. 6
2.1. Direct Current Plasmas	. 7
2.1.1 Stabilized d. c. arcs	
2.1.2. D.C. Plasma jets	. 11
2.2 Radio Frequency (RF) Plasmas	. 14

2.3. Microwave Plasmas.	19
2.3.1. Capacitively coupled microwave plasma	
(CMP).	20
2.3.2. Microwave induced plasmas (MIP)	2 2
CHAPTER III	
THEORETICAL BASIS OF SPECTROSCOPIC PLASMA	
DIAGNOSTICS	26
3.1. Types of Radiative Transitions.	26
3.1.1 Line emission.	26
3.1.2. Free-bound transition.	27
3.1.2. Free-bound transition. 3.1.3. Free-free transition.	28
3.2. Collisional and Radiative Processes in a Plasma.	28
3.3. Intensity of Spectral Line.	3 2
3.4. Models of Plasma State.	
3.4.1 Complete thermodynamic equilibrium (CTE).	
3.4.1 Complete includes 3.4.2. Local thermodynamic equilibrium (LTE).	
3.4.3. Partial local thermodynamic equilibrium	
(PLTE).	3 7

3.4.4 Corona model.		•	•	3 8
3.5. Intensity of Spectral Line Emitted in LTE.				39
3.6. Line Profiles.	•			4 0
3.7. Line Broadening Effects.			•	4 2
3.7.1. Natural broadening.			٠	4 2
3.7.2. Doppler broadening.	•			4 3
3.7.3. Pressure broadening.				4 4
CHAPTER IV				
EXPERIMENTAL SET UP.		•		48
4.1. The ICP Equipment.	•		-	48
4.1.1. The radio-frequency generator.			•	48
4.1.2. The load coil.			•	5 0
4.1.3. The plasma torch			•	5 1
4.1.4. Sample introduction device, the n	ebuliz	zer.		53
4.1.4.1. Pneumatic nebulizers			•	56
4.2. Spectrometric System	•		•	5 8
4.2.1. Illumination of the spectrometer.		٠	•	59
4.2.2. Dispersive equipment				63

4.2.3. The detector and readout system	64
4.3. Measurement of Spectral Respons of the Spectrometric	
System	66
4.3.1. Standard radiation sources	67
4.3.1.1. Primary standard sources.	67
4.3.1.2. Secondary radiation standards.	68
4.3.1.2.1. The tungsten lamp standards.	68
4.3.1.2.2. The carbon arc standard.	69
CHAPTER V	
RESULTS AND DISCUSSIONS.	7 4
5.1. Development of the Inductively Coupled Plasma-	
Atomic Emission Spectrometric Technique for the	
Determination of REE in Black Sand Samples	7 4
5.1.1. Optimization of the ICP-operating conditions	
for determination of the REE.	7 5
5.1.2. Samples and sample dissolution procedures	86
5.1.3. Preparation of standards.	89
5.1.4. Study of spectral interference and selection of	

the analytical lines	89
5.1.4.1. Study of spectral interference-selection	
of RE analytical lines	94
5.1.5. Matrix effect-Influence of easily ionizable	
elements (Sodium) on the intensity of the	
REE spectral lines	96
5.1.6. Analytical calibration curve	100
5.1.7. Limits of detection.	106
5.1.8. Precision	110
5.1.9. Correction of interference for Pr. Gd, Yb and	
Lu spectral lines.	115
5.1.10. Evaluation of the sample dissolution procedures.	120
5.1.11. Results of the analysis of the black sand samples	. 122
5.2. Spectrometric Diagnostic of the ICP	123
5.2.1. Measurement of plasma temperature	125
5.2.1.1. Determination of the excitation	
temperature using Fe I lines	128
5.2.1.2 Determination of the excitation	

temperature using Ar I lines	132
5.2.2. Determination of the electron density in the ICP.	145
5.2.2.1. Measurement of electron density from the half	
width of H_{β} spectral line	148
5.2.3. Influence of easily ionizable element (EIE) on the	
excitation temperature and electron density	151
CHAPTER VI	
CONCLUSIONS	156
DEEEDENCES	150

LIST OF TABLES

Table	(1): FWHM (in 10 ⁻³ nm) for spectral lines of some	
	elements	4 7
Table	(2): The spectral irradiance of the standard lamp	
	different wavelength	7 2
Table	(3): Operating parameters	8 6
Table	(4): Wavelength of analysis lines and interferents	97
Table	(5): Limits of detection of rare earth elements.	111
Table	(6): The precision (RSD) of concentration measurments.	112
Table	(7): Concentrations of the interfering elements	
	(C_j) in the sample solutions	115
Table	(8): Interference coefficients (Kij) for the interferents.	119
Table	(9): Correction coefficient (ΣK _{ij} C _j), uncorrected (A _i)	
	and corrected concentration (Ci) of the Pr, Gd, Yb	
	and Lu in the different sample solutions	121
Table	(10): Results obtained for REE in Rashid sample by	
	different dissolution procedures	122

Table	(11):	Results of analysis of black sand samples for REE.	124
Table	(12):	Wavelength, excitation energies, and log gf values	
		for Fe I lines.	129
Table	(13):	Fe I excitation temperature using gf value	
		after different authers	133
Table	(14):	Fe I excitation temperature	137
Table	(15):	Transition probabilities of Ar I lines	138
Table	(16):	Excitation temperature using Ar I lines gA value	
		after different authers.	141
Table	(17):	Excitation temperature by using Ar I lines	142
Table	(18):	Results of excitation temperature $T_{\text{exc.}}$.	145
Table	(19):	The Half-Width of voigt profiles	152
Table	(20):	Excitation temperature from Fe I lines in presence	
		of Na in the nebulized solution	154
Table	(21):	Excitation temperature from Ar I lines in presence	
		of Na in the nebulized solution.	155

LIST OF FIGURES

Fig. (1): Schematic diagram of the wall-stabilized arc.		8
Fig. (2): Schematic diagram of the three electrode plasma	jet.	1 1
Fig. (3): Schematic diagram of the CMP		20
Fig. (4): Schematic diagram of the MIP		2 2
Fig. (5): Intensity distribution of an emission line		39
Fig. (6): Schematic diagram of the ICP.torch		5 2
Fig. (7): Schematic diagram of a Babington nebulizer. A,		
Aluminium mounting; B, sample injector; C, gas in	jector;	
D, glass impactor bead; E, nylon screws; F, H, O-rin	gs;	
G, PTFE block; j, retaining bars; K, springs; L,		
spray chamber		5 7
Fig. (8): Schematic diagram of the illumination system of		
the monochromator		6 1
Fig. (9): Response curve.		7 3
Fig. (10): Effect of power on the net line intensity (I_X) , based	ckg-	
round intensity (I.,) and the net line to backg-		

round intensity ratio (I_X/I_U) (for LaII 408.67).	7 8
Fig. (11): Effect of power on I_x , I_u and I_x/I_u (for CeII 446.02).	79
Fig. (12): Effect of carrier gas flow rate on I_x , I_u and I_x/I_u	
(for LaII 408.67)	8 1
Fig. (13): Effect of carrier gas flow rate on I_x , I_u and I_x/I_u	
(for Ce II 446.02)	8 2
Fig. (14): Effect of plasma gas flow rate on I_X , I_U and I_X/I_U	
(for La II 408.67).	8 4
Fig. (15): Effect of plasma gas flow rate on I_x , I_u and I_x/I_u	
(for Ce II 446.02)	8.5
Fig. (16): Interference study at the wavelengths of the	
GdII 342.247 nm and the Pr II 390.8 nm lines	98
Fig. (17): Effect of Na concentration on the intensity of La II	
408.67 and Ce II 446.02.	101
Fig. (18): Analytical calibration curve of La. Ce, Pr. Nd and Sm	n. 103
Fig. (19): Analytical calibration curve of Eu, Gd, Yb andY.	104
Fig. (20): Analytical calibration curve of Dy and Lu	105
Fig. (21): Scans of Sm and Pr lines demonstrating line and	