A Comparative Study Between Different Laboratory Methods For Diagnosis Of Pulmonary Tuberculosis

Thesis

Submitted for partial fulfillment of The MD Degree in

Basic Medical Science (Bacteriology)

By went to the Board of the Board of

M.B.B.Ch., M.Sc.

Prof. Dr. Tahany Abdel Hameed Mohamed 5<u>4650</u>

Professor of Microbiology and Immunology

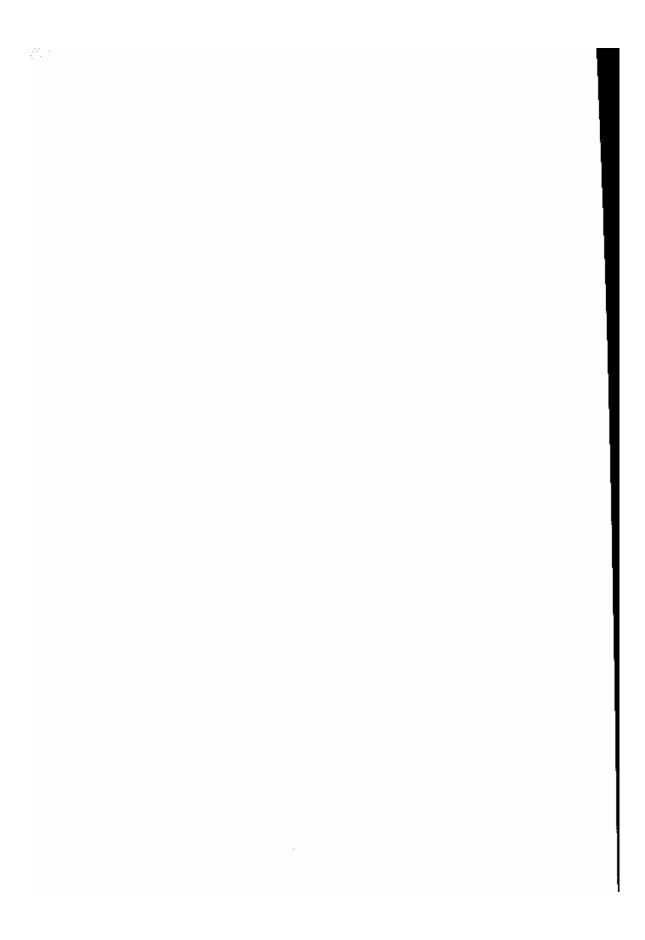
Prof. Dr. Ossama Shams El Din Rasslan

Professor of Microbiology and Immunology

Dr. Tahany Ahmed Abdel Raouf

Assistant Professor of Microbiology and Immunology

Faculty of Medicine Ain-Shams University (1997)


			٠.
·			

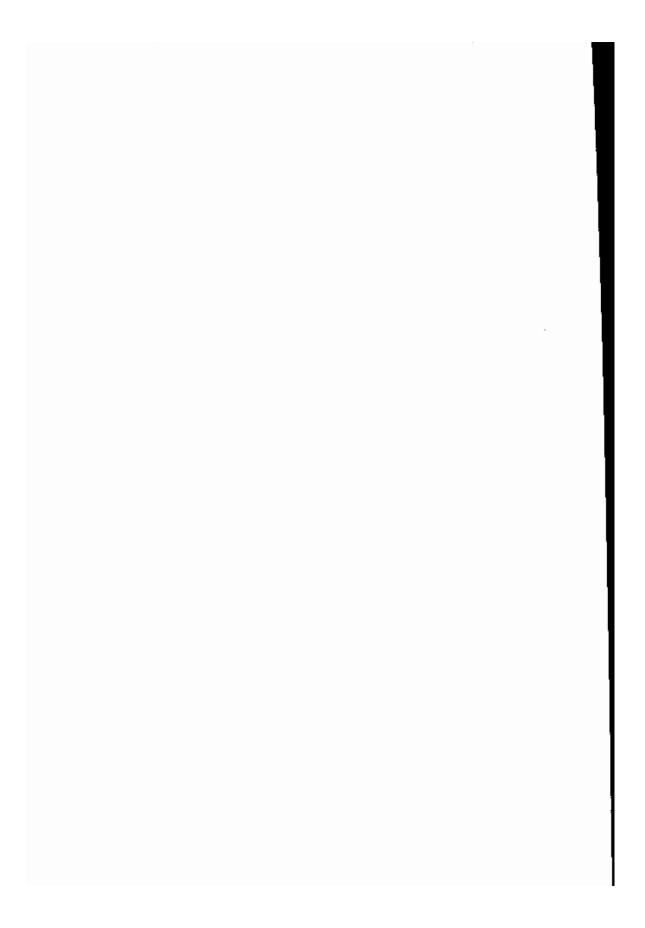
بينه الدحمد الدجيم

وفوق کل ذار علم علیم

جدو الله المعالم

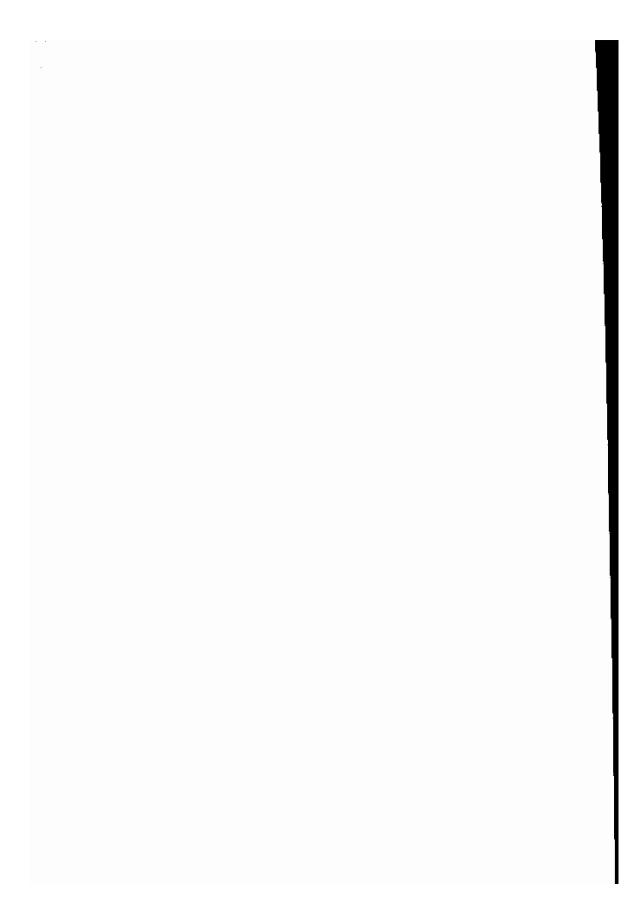
Acknowledgment

I would like to express my deep appreciation and sincere gratitude to Prof. Dr. Tahany Abdel Hameed Mohamed, Professor of Microbiology and Immunology, Ain Shams University, for giving me the privilege of working under her supervision, for the encouragement, and the continuous help she offered.


I am also grateful to Prof. Dr. Ossama Shams El Din Rasslan, Professor of Microbiology and Immunology, Ain Shams University, for his valuable guidance and suggestions. His cooperative attitude was of great help to complete the work.

I owe special gratefulness and much regards to Dr. Tahany Ahmed Abdel Raoul, Assistant Professor of Microbiology and Immunology, Ain Shams University for supervising the work and continuous advice and support.

Laila Abd El Latif Kholeif 1997


Abstract

This study aimed to provide patients with fast and accurate results for diagnosis of mycobacterial disease and to compare and contrast LJ media. biphasic culture media and BACTEC system for the rate of recovery time needed to detect positive mycobacterium tuberculosis culture, contamination rate and cost benefit relationship. The study included 65 patients attending Abbassia Chest Hospitals and Ain-Shams University Hospitals, All patients were diagnosed as pulmonary tuberculosis on clinical and radiological bases. Morning sputum samples were examined microscopically for acid fast bacilli Ziehl Neelsen and cold method which showed 100% agreement. Microscopic examination of specimens after digestion decontamination and concentration showed a decrease in the number of acid fast bacilli seen per The rate of isolation of mycobacterium tuberculosis was higher by BACTEC (69.2%) than LJ (60%) and biphasic culture media (49.2%). The mean time for isolation of mycobacterium tuberculosis by BACTEC (9.8 days ± 3.3 for smear positive specimens and 19.4 days ± 4.5 for smear negative specimens) was shorter than that for LJ (20.1 days \pm 4.3 for smear positive specimens and 29.5 days ± 3.2 for smear negative specimens) and biphasic culture media (19.3 days ± 3.7 for smear positive specimens and 30.4 days ± 3.2 for smear negative specimens). Rate of contamination of BACTEC 2% was lower than that of LJ and biphasic culture media. Antibiotic resistance in patients with negative history of previous antituberculous intake was recorded as follows; 26% for streptomycin, 11% for rifampin 57% for ethambutol and 37% for isoniazide. Antibiotic resistance in patients with positive history of previous antituberculous intake was as follows; 70% for streptomycin, 50% for rifampin, 50% for ethambutol and 70% for isoniazide. The study concluded that cold staining method is a promising technique that can be used as a bed side test and BACTEC system has a higher recovery rate, lower detection time, and lower contamination rate than LJ and biphasic culture media, but it is more costy than both.

Table of Contents

Subject	Page No
Introduction And Aim Of Work	1
Review of literature	
A. Genus mycobacterium	
1. General characters	4
2. Classification	7
B. Mycobacterium tuberculosis	
1. Morphology	15
2. Culture characters	15
3. Reaction to physical & chemical agents	16
4. Proiein structure	18
C. Tuberculosis	
1. History of the disease	23
2. Epidemiology of juberculosis	23
Pathogenesis of pulmonary tuberculosis	28
4. Clinical aspects	31
5. Immunity in tuberculosis	35
6. Laboratory diagnosis	44
7. Treatment	86
8. Prophylaxis	90
Materials and Methods	98
Results	117
Discussion	156
Summary, Conclusion, & Recommendations	171
References	177
Arabic summary	

List of Tables

Table	Page No.
Table (1): Clinical data of patients.	118
Table (2): Radiological findings among the patients.	120
Table (3): Comparison between the two direct stained	121
(Ziehl-Neelsen and cold method) films.	
Table (4): Results of direct microscopic examination	122
for acid-fast bacilli.	
Table (5): Comparison between microscopic	123
examination of sputum samples before and	
after digestion decontamination,	
Table (6): Rate of recovery of mycobacteria by L.J.	124
media from positive and negative sputum	
samples.	i
Table (7): Identification of mycobacterial isolates on	125
L.J. by niacin test.	
Table (8): Rate of recovery of mycobacteria by	126
biphasic culture media from positive and	
negative smears.	
Table (9): Identification of mycobacterial isolates on	127
biphasic culture media by niacin test.	
Table (10): Rate of recovery of mycobacteria by 12 B	128
vial from positive and negative smears.	
Table (11): Identification of mycobacterial isolates on	129
12 B vial by α -NAP test.	
Table (12): Rate of recovery of mycobacterium by the	130
three different media.	
Table (13): Rate of recovery of M. tuberculosis on the	131
three different media.	
Table (14): Smear sensitivity and specificity in	133
relation to different culture media	

Table (15): Rate of recovery of M. tuberculosis by L.J.	134
and biphasic culture media.	
Table (16): Rate of recovery of M. tuberculosis by	135
BACTEC and L.J. media.	
Table (17): Rate of recovery of M. tuberculosis by	136
BACTEC and biphasic culture media.	
Table (18): Comparison between α-NAP and macin	137
test in identification of mycobacterium.	
Table (19): Time needed for isolation and	139
identification of M. tuberculosis by L.J media.	
Table (20): Time needed for isolation and	140
identification of M. tuberculosis by biphasic	
media.	
Table (21): Time needed for isolation and	141
identification of M. tuberculosis by BACTEC.	
Table (22): Time needed for isolation and	142
identification of M. tuberculosis by BACTEC,	
L.J. and biphasic culture media from smear	
positive specimens.	
Table (23): Time needed for isolation and	144
identification of M. tuberculosis by BACTEC,	
L.J. and biphasic culture media from smear	
negative specimens.	
Table (24): Incidence of contamination in the three	146
different media.	
Table (25): Cost of the three different media (L.E.).	148
Table (26): Patterns of resistance to different	149
antituberculous drugs in the presence and	
absence of previous antituberculous intake.	
Table (27): Patterns of antibiotic sensitivity in the	152
presence or absence of positive history of	
previous antituberculous intake.	

List of Figures

Figure	Page No.
Fig. (1): Clinical data of patients.	119
Fig. (2): Radiological findings among the patients.	120
Fig. (3): Results of direct microscopic examination for acid-fast bacilli.	122
Fig. (4): Rate of recovery of <i>M. tuberculosis</i> on the three different media.	132
Fig. (5): Results of α-NAP and niacin test in identification of mycobacterium.	138
Fig. (6): Mean (± S.D.) time needed for isolation and identification of <i>M. tuberculosis</i> by BACTEC, L.J. and biphasic culture media from smear positive specimens.	143
Fig. (7): Mean (± S.D.) time needed for isolation and identification of <i>M. tuberculosis</i> by BACTEC, L.J. and biphasic culture media from smear negative specimens.	145
Fig. (8): Contamination in BACTEC, L.J. and biphasic culture media.	147
Fig. (9): Resistance to different antituberculous drugs in patients with negative history of previous antituberculous intake.	150
Fig. (10): Resistance to different antituberculous drugs in patients with positive history of previous antituberculous intake.	151
Fig. (11): Incidence of primary resistance to one or more drug.	153
Fig. (12): Incidence of secondary resistance to one or more drugs.	154
Fig. (13): Resistance to one or more drugs in the total isolates.	155