و الفغلام شان الم

سورة البقرة آنر ٢٢

Biochemical Studies on Some Brown Algae in the Red Sea

BOARD OF SCIENTIFIC SUPERVISION

Professor Dr. :- ZAINAB Z. EL DARDIRI Professor of Biochemistry Biochemistry Dept. Faculty of Science Ain Shams University Cairo - Egypt.

Professor Dr. :- TAHANI M. MAHAREM
Professor of Biochemistry
Biochemistry Dept.
Faculty of Science
Ain Shams University
Cairo - Egypt

Professor Dr. :- M.M. HUSSEIN DARWISH (
Professor of Natural & Microbial Products .
National Research Centre

Dokki - Cairo

ع ۱۲۱ دا . ع دو و می الدین عبول می ۹ ع دو د کوی صورتو ارک

AKNOWLEDGEMENT

Praise be to Almighty God for guiding my efforts towards success in this thesis.

I am deeply grateful to Prof. Dr. ZAINAB Z. ELDARDIRY Prof. of Biochemistry, Faculty of Science, Ain Shams Universty for her supervision and kind guidance throughout this study.

I am also wish to express my sincere gratitude and appreciation to Prof. Dr. TAHANI M. MAHAREM, Prof. of Biochemistry, Faculty of Science, Ain Shams University for supervision and critical reading of this thesis.

Special deep gratitude and Sincere appreciation to Prof. Dr. M. MAGDEL- DIN HUSSEIN, Department of Natural and Microbial Products, National Research Centre, for his Supervision, continuous guidance throughout the course of this research work and in writing the thesis.

I am very thankful to Dr. SAMIA A. SHOMAN and Assistant Dr. M.S. AHMED, in Drug Research and Experimental Oncology Dept., National Cancer Institute, Cairo University for their participation in Antitumour Assay of the thesis.

i am greatly indebted to National Research Centre for the financial support and facilities that enabled me to carry out this work

Hassan Abdel Zahir Mohamed 1994 To My Parents . To My Wife . And To My Daughter (ZAINAB) . قَالُوا فَالْمُوا فَالْمُ الْمُعَا عَلَمْ مَنْ فَالْمُ الْمُحَامِدُمُ الْمُحِمِدُمُ الْمُحْمِدُمُ الْمُحْمِدُمُ الْمُحْمِدُمُ الْمُحْمِلُمُ الْمُحْمِلُمُ الْمُحْمِلُمُ الْمُحْمِلُمُ الْمُحْمِلُمُ الْمُحْمُ الْمُحْمِلُمُ الْمُعُلِمُ الْمُعُلِمُ الْمُعُلِم

و الفعار عند الفات المفات

سورا البقة أنبراح

Biochemical Studies on Some Brown Algae in the Red Sea

BOARD OF SCIENTIFIC SUPERVISION

Professor Dr.:-ZAINAB Z. EL DARDIRI
Professor of Biochemistry
Biochemistry Dept.
Faculty of Science
Ain Shams University
Cairo - Egypt.

Professor Dr. :- TAHANI M. MAHAREM
Professor of Biochemistry
Biochemistry Dept.
Faculty of Science
Ain Shams University
Cairo - Egypt

Professor Dr. :- M.M. HUSSEIN DARWISH

Professor of Natural & Microbial Products .

National Research Centre

Dokki - Cairo

۹۲۱ دا . ۱۹ ده هی الدی عبوری ۱۹ ده می کاری صوره تو ارفی

AKNOWLEDGEMENT

Praise be to Almighty God for guiding my efforts towards success in this thesis.

1 am deeply grateful to Prof. Dr. ZAINAB Z. ELDARDIRY Prof. of Biochemistry, Faculty of Science, Ain Shams Universty for her supervision and kind guidance throughout this study.

I am also wish to express my sincere gratitude and appreciation to Prof. Dr. TAHANI M. MAHAREM, Prof. of Biochemistry, Faculty of Science, Ain Shams University for supervision and critical reading of this thesis.

Special deep gratitude and Sincere appreciation to Prof. Dr. M. MAGDEL- DIN HUSSEIN, Department of Natural and Microbial Products, National Research Centre, for his Supervision, continuous guidance throughout the course of this research work and in writing the thesis.

I am very thankful to Dr. SAMIA A. SHOMAN and Assistant Dr. M.S. AHMED, in Drug Research and Experimental Oncology Dept., National Cancer Institute, Cairo University for their participation in Antitumour Assay of the thesis.

I am greatly indebted to National Research Centre for the financial support and facilities that enabled me to carry out this work

Hassan Abdel Zahir Mohamed 1994 To My Parents . To My Wife . And To My Daughter (ZAINAB) .

Abstract

The chemical composition of each of the local brown algae: Cystoseira trinode, Sargassum linifolium, Turbinaria decurrens and Padina pavonia was investigated during the four seasons of the year. Many products of fucose-containing polysaccharide materials were isolated from these algal species and then examined for their anticoagulation, antitumour and fibrinolytic activities. The polysaccharide material obtained from S. linifolium (collected in January) appeared as the most biologically active product. Accordingly, it was the target of a specific study aiming at the elucidation of its structural features.

CONTENTS

	Page
- INTRODUCTION	1
- OBJECT OF INVESTIGATION	2.
- REVIEW OF LITERATURE	3
A- Low-Molecular Weight Carbohydrates	5
B- Polysaccharides of Marine Brown Algae :	5
1- Laminaran	5
2- Alginic Acid	6
3- Cellulose	8
4- Sulphated Polysaccharides	9
(a) Fucoidan	9
(b) Uronic Acid-Containing Sulphated	
Polysaccharides	11
(c) Biological Activities of Algal Poly-	
saccarides	21
C- Other Algal Constituents :	26
1- Protein and Amino Acid Components	26
2- Total Lipids	27
3- Ash Contents	28
- MATERIALS AND METHODS :-	
- MATERIALS :	31
- METHODS :-	34
A- Determination of the Algal Constituents :	34
1- Moisture Content	34
2- Total Ash	34
3- Total Organic Nitrogen and Crude Protein	34
4- Free Amino Acids	34
5- Total Lipids	35
6- Low-Molecular weight Carbohydrates	.36
7- Mannitol (Using a Titrimetric Method)	37

8- Laminaran	3B
9- Alginic Acid	38
10- Cellulose	39
11- Extraction of Acid-Soluble Polysaccharide(s)	40
12- Combined Sugars :	
13-Total Carbohydrates	43
B- Analysis of the Water-Soluble and Water-Insoluble	
Polysaccharide Materials	.44
1- Determination of Water-Soluble Protein	44
2- Sulphate Content	46
3- Anticoagulation Activity Test	
4- Fibrinolytic Activity Test	
5- Antitumour Activity Test	48
C- Large-Scale Preparation of the Biologically Active	
Polysaccharide Materials :	56
D- Fractionation of the Partially-Purified Biologically Active	
Polysaccharide Materials	58
E- Autohydrolysis of Acidic Fraction (F-Sar.)	60
F- Periodate Oxidation of the Acidic Fraction (F-Sar.)	60
- RESULTS	64
- DISCUSSION	141
- REFERENCES	
-SUMMARY	
- ARABIC SUMMARY	

List of Tables

		,3
	onal Variation in some Constituents of the stigated Algal Species	66
Acid :	esaccharide Composition of Various Alginic Samples Isolated from the Seaweeds Collected y.	71
Result	esaccharide Composition of the Fractions ited from Treatment of Alginic Acid (of <i>P. pavoni</i> CaCl ₂ .	•
` '	onal Variation in Other Constituents of the stigated Algal Species.	75
	onal Variation in the Components of Alcoholic of the Investigated Algal Species.	82
	of the Algal Polysaccharide Materials Extracted HCI (pH ₁) at 80 °C for 3 hrs	87
٠,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ysis of the Algal Water-Soluble Polysaccharide erials Extracted with HCl (pH ₁) at 80 °C for 3 hrs.	93
Wate	Proportions of Sugar Components of the Algal er-Soluble Polysaccharide Materials Extracted HCI (pH ₁) at 80 °C for 3 hrs.	99
. ,	iysis of the Algal Water-Insoluble Polysaccharide	

		Page
Table (10) :	The Proportions of Sugar Components of the Algal Water-Insoluble Polysaccharide Materials Extracted with HCI (pH ₁) at 80 °C for 3 hrs.	106
Table (11) :	Analysis of the Algal Water-Soluble Polysaccharide	
	Materials Yielded from the Extraction of the Algae with HCl (pH ₃) at Room Temperature for 72 hrs.	
	(24 hrs. x 3).	108
Table (12) :	: The Proportions of Sugar Components of the Algai Water-Soluble Polysaccharide Materials Extracted with HCl (p H_3) at Room Temperature for 72 hrs.	
	(24 hrs. x 3)	115
Table (13)	: Fibrinolytic Activity of the Isolated Fucose-Containing Polysaccharide Materials .	121
Table (14)	: Effect of Fucose-Containing Polysaccharide Materials on the Viability of Ehrlich Ascites Carcinoma Cells (In Vitro).	123
Table (15)	: Effect of Fucose-Containing Polysaccharide Materials on the Volume (mm³) of Solid Ehrlich Ascites Carcinoma (<i>In Vivo.</i>)	125
Table (16)	: DNA, RNA and Protein Contents of Solid Ehrlich Ascites Carcinoma before and after Treatment with Algal Fucose-Containing Polysaccharide Materials	ac f

		age
Table (17) :	Results of Fractional Precipitation of the Partially	
•	Purified Polysaccharide Material (Isolated from	
	S. Iinifolium) Using Acetone	133
Table (18) :	Periodate Oxidation Studies on the Acidic Fraction	
` '	" F-Sar "	138