

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

ELECTRICAL POWER AND MACHINES DEPARTMENT

Economy of Using Renewable Energy Resources in a Rural Area in Egypt

A Thesis

Submitted in partial Fulfillment of the Requirements
of the degree of Master of Science in Electrical
Engineering POWER AND MACHINES

1/2 th

Ву

HASSAN SELIM ALI

B.SC. Elec. Eng., Asuit University, 1974-

621.042 H.S

Supervised by

Dr. Soheir Sakr

Elec. Power and Mach. Dept., Faculty of Engineering. Ain Shams University Dr. A.M. Atallah

Elec. Power and Mach. Dept., Faculty of Engineering. Ain Shams University

CAIRO 1993

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master in Eletrical Engineering.

The work included in this thesis was carried out by the author. No part of this thesis has been submitted for a degree or a qualification at other University or Institution

Date : 19 / 9 / 1393 Signature: Hassan Selim Ali'

: Hassan Selim Ali

ACKNOWLEDGEMENT

The author would like to thank Dr. Soheir Sakr and Dr. A.M. Atallah for all that they have done. Their encouragement and fruitful remarks will always be a guiding lights throughout the author's life.

The author has the honour to dedicate this modest thesis to Dr. S. Sakr and Dr. A. M. Atallah thanking them for all the efforts they have exterted so that it could be finished.

The author can hardly find the words to express his thankfulness, appreciation and gratitude for all the help and useful guidance of Dr. S. Sakr and Dr. A. M. Atallah offered during their supervision. He will be always indebted to them and will never forget their care.

LIST OF SYMBOLS

SYMBOL	DEFINITION	DIMENSION
m/s	Wind Speed	meter per scond
m^3	Cubic meter	
MPE	Motor - Pump . Efficiency	%
AHED	Average hydraulic energy demand	kwh
V	Volume of water	m^3
H	Head	meter
AED	Average energy demand	kwh
ma	Air mass. Flow rate	kg
m_f	Fuel mass, flow rate	kg or ton
A/F	Air per fuel ratio	п
F/A	Fuel per air ratio	н ((
A _n	Annual revenue requirements	\$
A_v	Annual Variable costs	\$
$A_{\mathbf{f}}$	Annual Fixed costs	\$
MARR(or i)	Minimum attractive rate of return	%
, ,	or Interest rate	
D	Depreciation	%
n	Lifetime of years	11
IT	Income Tax	%
F.C.R _T	Total Fixed Charge Rate	%
Poreq	Disel required capacity power	kw
$F.C_T$	Total Fuel Consumption	cubic meters
S	The price after n period	L.E or \$
n	Number of years	
P	the present value	L.E or \$
C_{t1}	the overall capital cost of the	\$
	diesel system at interest rate = 6 %	
C _{t2}	the overall capital cost of the diesel	\$
	system at interest rate i = 8 %	
$C_{\mathbf{R}}$	The total running cost	\$ / year

A_{n1}	Annual cost at $i = 6 \%$	\$ / year
A _{n2}	Annual cost at $i = 8 \%$	\$ / year
Cu	The cost of electricity	c / kwh
$C_{\mathbf{T}}$	Total capital cost	\$
I.G	Induction generator	
D.C	Direct current	
A.C	Alternating current	
HAWT's	Horizontal axis wind Turbine's	
VAWT's	Vertical axis wind Turbine's	
R.P.M	Revolution per minute	
8	Air denisty	kg/m ³
m	Mass of air	kg
u_o	Unpertubed wind speed	m/s
A_1	Gross - sectional area of the	m^{-2}
	turbine disc	
Ao	Area of the oncoming wind speed	m^2
A_2	Area of the air stream at mimimu	m^2
F	Force of air on the turbine	
u_2	Wind speed leaves the turbine	m / s
u_1	Wind speed of the turbine disc	m/s
Pt	The power extracted by the turbine	kw
$P_{\mathbf{w}}$	The power extracted from the wind	kw
a	The interferance factor	%
P_{o}	The power in the unperturbed wind	kw
C_{p}	Power coefficient	%
C _{pmax}	Maximum power coefficient	%
$\mathbf{u_c}$	Cut - in wind speed	m/s
u_r	Rated wind speed	m/s
$u_{\mathbf{f}}$	Furling wind speed (cut - out)	m/s
$\mathbf{w}_{\mathbf{m}}$	Mechanical angular velocity	
P_{m}	Mechanical power at the output	Нр
	of the turbine	
P_e	output electric power	kw
m	transmission efficiency	%
g	Generator efficiency	%
0		

o	Overall efficiency	%
P _{mr}	Rated output power of the turbine	kw
C _{pr}	Coefficient of performance at rated	
p.	wind speed	
W_t	Transmission angular velocity	
W_e	Generator angular velocity	
q	Number of stages for gear box	
X & Y	Parameters	
P_{tr}	Rated mechanical power	kw
P_{er}	Rated output power	kw
սլլ	Wind speed at Z ₁ hub height	m/s
u ₂₂	Wind speed at Z ₂ hub height	ın/s
Z_1	Hub height at wind speed u ₁	meters
Z_2	Hub height at Wind speed u2	meters
E	the energy per year per kilowatt	kwh
	of rating	
C.F	Capacity Factor	%
C&k	The weibult parameters	
u _m	mean wind speed	m/s
E_{av}	the average energy required	kwh
Y_1	The cost of initial few machines	\$
Y_2	the cost of units after n doublings	\$
S	The slop of the cost curve	
X_1	The first volume of production	
X_2	The secound volume of production	
C_t	The capital cost of wind generating	\$
n	units	1
P_{D}	Diesel generating power required	kw
C _{tw}	Total capital cost of all wind units	\$
C_{td}	Total capital cost of diesel units	\$
Cr	Running cost	\$
P_1	The power output of the wind turbine at	kw
	average wind speed um1	
P ₂	The power output of the wind turbine at	kw

	average wind speed um2	
$T_{\mathbf{d}}$	The average operating time of the	hours
- u	disel back - up of wind system	
O & M	Operation and Maintenance	
N	Number of wind units	
d	Rotor diameter	metes
Cos	Power factor	3.437
P_c	The power capacity required for solar	MW
	thermal central receiver power plant	2.6
2 h	Heliostat efficiency	%
3 .	Receiver efficiency	%
3	Energy transport efficiency	%
3 at	Storage system efficiency	%
3 r 3 et 3 st	Steam turbine efficiency	%
A _h	Required area of heliostats	m^2
P _{th}	Thermal power	kw _{th}
$C_{\mathbf{h}}$	Heliostat cost	\$
C _r	Receiver cost	\$
SI	silicon material	\$
В	Boron	
Ph	Phosphorous	
Wp	Watt peak	
ΡŶ	Photovolatic	
S.O.C	State of change	
AΗ	Battery capacity in amper hours	
D.O.D	Depth of discharge	
KVA	Kilo volt amper	
ΕO	East Oweinat	

ABSTRACT

Posing the choice of using renewable energy for cultivating an area outside the Nile basin is the main objective of this study. Renewable energy is very clean and has no environmental effects. It is easy for construction and there is no need for transporting any fuel to the proposed site. For this purpose 10,000 feddans of both summer and winter crops can be used as a demonstration scheme and a new city at the proposed site consequently will be constructed.

The water requirements for both centre pivot and drip systems will be estimated for the proposed crops (citrus, vegetables, alfalfa, sunflower, sorghum and wheat/barley). Then, the daily average energy required for both systems of irrigation will be calculated during each month of the year. The non irrigation loads (distilled water, residential load, hospitals, officers, etc) also be estimated.

For supplying the energy required to the calculated load four options are presented, these are stand-alone diesel generator system, wind-diesel hybrid system, solar thermal generator-auxiliary boiler hybrid system, and photovoltaic with a back-up of batteries or diesel system, Each one of these four options was studied where we presented an introduction system description, how the energy is produced survey of the capital cost, operation and maintenance cost from different sources of different countries. A cost estimation for each item of each option including annual cost has been done. Then we have compared between the four options to select the minimum overall cost and to supply the energy required for irrigation and non irrigation.

TABLE OF CONTENTS

Page)
LIST OF SYMBOLS	
ABSTRACT	
TABLE OF CONTENTS	
CHAPTER - I : INTRODUCTION	
CHAPTER - II : WATER AN ENERGY REQUIREMENTS	
FOR A 10,000 FEDDANS AT THE PROPOSED	J
SITE	
2.1. Introduction	ŧ
2.1.1 Energy Potential	
2.1.2 Well Field Layout and Well	
design	0
2.2. Water Estimated Requirements1	7
2.3. Energy Demand 21	
2.3.1 Irrigation Energy Requirements	
2.3.2 Non - Irrigation Electrical	
Energy Requirements	•
CHAPTER - I [] : DIESEL GENERATING OPTION32	
3.1. Introduction	
3.2. The Diesel Generator Components	
3.3. Diesel Fuels	
3.4. Economic Study Requirements	
3.4.1 Minimum Attractive Rate of	
Return (MARR) or Interest Rate (i)	
3.4.2 Depreciation41	
3.4.3 Income Taxes	
3.4.4 Other taxes and Insurance	
3.4.5 The Total Fixed Charge Rate (F.C.R. T.) 42	
3.5 The Generator Set size and The	
Fuel Consumpion	
3.6 Cost Estimations	
3.6.1 Capital Cost for Diesel Units46	
3.6.2 The Running Cost	

3.6.3 The Total Annual Cost	49
3.6.4 The Cost of Electricity	50
CHAPTER . IV : THE WIND ENERGY OPTION	51
4.1. Introduction	51
4.1.1. Wind Power Today's Energy Option	53
4.1.2 Wind Energy Basics	54
4.1.3 Mechanical Farm Windpumps	5 6
4.2. Technology Description	57
4.3. Control System For Variable	67
Speed Wind Turbines	
4.4. Power Production From The Wind	69
4.4.1 Wind Energy Content	69
4.4.2 Wind Energy Outputs	79
4.5. Cost Analysis For Wind Power	82
Systems	
4.5.1. Effect of Mass Production	83
wind Energy Prices	
4.5.2. Analysis of Construction Costs	84
For Turbines	
4.5.3. Cost Survey of Wind	86
Generating System	
4.5.4. Machine Diameter, Mean and Rated	86
Wind Speed as a Function of Cost	
4.5.5. Maintenance of Wind Generators	94
4.6. Description and Cost Estimations of	96
Wind Generating Units	, ,
4.6.1 The 100 Kw Wind unit	96
4.6.1.1. Unit Description	96
4.6.1.2 Capital CostEstimations	98
4.6.1.3 Running Cost Estimations	102
4.6.1.4 Annual Cost Estimations	107
4.6.1.5 Cost of Electricity	108
4.6.2. The 225 Kw Wind Unit	108
4.6.2.1. Unit Descriptions	108
4.6.2.2. Capital Cost Estimations	111
4.6.2.3. Running Cost Estimations	113
4.6.2.4. Annual Cost Estimations	11/

4.6.2.5 Co	ost of Electricity	115
		116
4.6.3.1. Ur	nit Description	116
	pital Cost Estimations	
4.6.3.3 Ru	nning Cost Estimations	121
4.6.3.4 A	nnual Cost Estimations	122
4.6.3.5 C	ost of Electricity	122
	00 Kw Wind Unit	123
4.6.4.1	Unit Description	123
4.6.4.2	Capital Cost Estimations	125
4.6.4.3	Running Cost Estimations	129
4.6.4.4	Annual Cost Estimations	130
4.6.4.5	Cost of Electricity	131
CHAPTER . V .: SOLAR THERMA	L OPTION	
		133
	ersion - Collection	134
and Storage		15
2	cations	141
	Heating	141
5,3,2. Power	Generation	145
	Low - Temperature	146
	Rankine cycle	
	Medium - Temperature	148
	Rankine Cycle	
5.3.2.3.	High - Temperature	149
I	Rankine Cycle	
5.3.3. Solar I	nsolation and Estimated	151
The Po	wer Capacity of The System	
•	d Cost Analysis of	154
each Item for 1		
Solar Thermal	Central Receiver System	
	Description	154
5.4.2 System	m Performance	174
•	s For Solar	178
Thermal Pow	-	
	r Thermal Survey Cost	
	e Costs For Different	181
Type	s of Solar Thermal Electric	

5.6. Cost Estimations For Each Item of The	184
Proposed Power Plant	
5.6.1. Heliostats	184
5.6.2. Receiver	184
5.6.3. Tower	185
5.6.4. Energy Transport	
5.6.5. Energy Conversion	186
5.6.6. Storage System	186
5.6.7. Balance of Plant	186
5.6.8. Auxiliary Boiler	
5.6.9. Total Capital cost	187
5,6,10. Total Operation and	187
Maintenance Cost	10.
5.6.11. Total Annual Cost	190
5.6.12. Cost of Electricity	191
CHAPTER - VI: THE PHOTOVOLTAIC OPTION	400
6.1. Introduction	193
6.2. Photovoltaic (PV) Cell Design	198
and Manufacturing	100
6.2.1. P V Cell Design.	198
6.2.2. P V Solar Cell Manufacturing	206
6.2.3. Technology Advances For	207
6.3. Photovoltaic System Description	210
6.3.1. A complete PV System	210
6.3.2. Energy Production	225
6.4. PV Cost Analysis	227
6.5. Capital Cost Estimations	230
of PV System	2.50
6.5.1. Solar Arrays	230
6.5.2 The Cost of Controls	235
6.5.3 Cost of Land Preparations	
6.5.4 . The Battery Cost Estimation	23 5 236
6.5.5 . The Inverter Cost Estimations	
6.5.6. Total Cost With a Battery Back - up	2 38

6.5.7. Cost Estimations of Electricity	238
Using Back - up Batteries	
6.5.8. Capital Cost Estimations	239
Using Back - up Diesel Generators	
6.5.9. Annual Cost Estimations Using	243
Back - up Diesel Generators	
6.5.10. Cost of Electricity Using	243
Back - Up Diesel Generators	
CHAPTER - VII : CONCLUSION	245
REFERENCES .	
ARABIC CONCLUSION	