Erythropoietin: Genetics, Control, Action and Clinical Applications

Review of Literature Submitted for Partial Fulfillment of Master Degree in Clinical Pathology

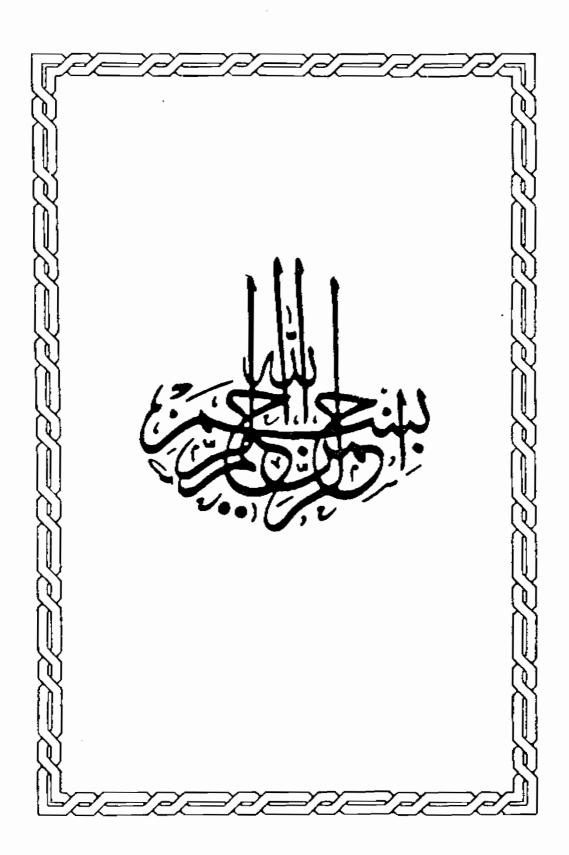
Ву

Mona Mohamed Mahmoud Ibrahim (M.B.B.Ch)

Supervisors

Prof. Dr. Waguih Naguib Ibrahim
Professor of Clinical Pathology
Ain Shams University

Dr. Nevine Ahmed Kassem
Assistant Professor of Clinical Pathology
Ain Shams University


Prof. Dr. Samia Aly Temtamy

Professor of Human Genetics National Research Centre

Faculty of Medicine Ain Shams University 1993 -2346

W ZSZ

plant of the series

Acknowledgement

I thank **Professor Dr. Waguih Naguib Ibrahim**, Professor of Clinical Pathology, Ain Shams University, for allowing me to work under his supervision and I thank him for the help and encouragement.

My sincere thanks and gratitude to Professor Dr. Samia Aly Temtamy, Professor of Human Genetics, the National Research Centre for her support and invaluable advice.

I also thank Dr. Nevine Kassem, Assistant Professor of Clinical Pathology, Ain Shams University, for her generous and continuous advice and assistance.

My sincere thanks and appreciation to Dr. Ekram Fateen, Lecturer of Medical Biochemistry, the National Research Centre, for her encouragement and instructions and guidance.

Contents

Acknowledgement	į
List of abbreviations	ii
List of figures	iii
List of tables	iv
l-Introduction	1
II- Erythropoiesis	4
III- Chemistry, genetics and structure of erythropoletin	11
IV-Physiology of erythropoiesis	20
IV-1 Erythropoietin receptors	30
IV-2 Site and mechanism of action	40
IV-3 Assays for erythropoletin	44
IV-4 Plasma concentration	48
V- Abnormalities of the erythropoletin system	51
VI- Recombinant human erythropoietin :	54
VI-1 Technique of recombinant human erythropoietin production	54
VI-2 Therapeutic uses	62
A-Chronic renal failure	62
B- Renal transplant dysfunctions	82
C-The doses of r-Hu EPO for treatment of non renal anemia	84
D- Anemia due to chronic disorders :	87
a- Rheumatoid arthritis	87
b-Cancer	88
E- AIDS treated with zidovudine	90

F- Myelodysplastic disorders	93
G- Allogenic bone marrow transplantation	97
H- Bone marrow infiltration	99
I- Pure red cell aplasia 1	02
J- Autonomic failure 1	05
K- Postpartum anemia 1	106
L- Anemia of prematurity 1	111
M- Autologous blood collection 1	112
N- Genetic diseases 1	114
a- Beta thalassemia	14
b-Sickle cell disease 1	121
c-Gaucher's disease	24
VII-Summary 1	28
VIII-References 1	132
IX- Arabic summary	

List of Abbreviations

BFU-E Burst forming unit- erythroid

bp Base pair

cAMP Cyclic adenosine monophosphate

CAPD Chronic ambulatory peritoneal dialysis

cDNA Complementary deoxyribonucleic acid

CsA Cyclosporine

CFU-E Colony forming unit -erythroid

CFU-GM Granulocytic macrophage colony forming unit

CFU-MK Megakaryocytic colony forming unit

CFU-S Colony forming unit- spleen

CoCI Cobalt chloride

EPO Erythropoietin

FPG Fluorochrome- photolysis-Giemsa

FSH Follicle stimulating hormone

5-FU 5 fluorouracil

FVA Friend virus that produces anemia

GVHD Graft versus host disease

hG-CSF Human granulocyte colony stimulating factor

hGM-CSF Human granulocyte macrophage colony stimulating factor

HPLC High pressure liquid chromatography

IGF-I Insulin like growth factor

IL Interleukin

IRMA Immunoradiometric assay

I-rEPO Radioactive labelled erythropoietin

Kb Kilobase

LH

Leutinizing hormone

MDS

Myelodysplastic syndrome

MnCI

Manganese chloride

mRNA

Messenger ribonucleic acid

NiCI

Nickel chloride

PGE

Prostaglandin E

PRCA

Pure red cell aplasia

RA

Rheumatoid arthritis

r-HuEPO

Recombinant human erythropoietin

r-Hu GCSF

Recombinant human granulocytic colony

stimulating factor

r-Hu GM-CSF Recombinant human granulocytic macrophage

colony stimulating factor

RIA

Radioimmunoassay

SCD

Sickle cell disease

SV

Simian virus

TCA

Trichloroacetic acid

TFR

Transferrin receptor

TNF

Tumor necrosis factor

TSH

Thyroid stimulating hormone

List of Figures

page

Figure	1: Schematic representation of the various stages of erythropolesis	s. 5
Figure	2: Diagram of WPM mouse Rb(5,14) chromosome indicating distribution of silver grains on 43 labelled chromosome 5.	16
Figure	3: Predicted antiparallel four-⊄- helix bundle fold for EPO.	18
Figure	4: The feedback circuit that adjusts the rate of red cell production to the demand of oxygen.	21
Figure	5: Autoradiographic analysis of ¹²⁵ l-r-EPO binding to human marrow cells.	33
Figure	6: Effect of early withdrawal of EPO during maturation of human erythroblasts.	34
Figure	7: Predicted configuration of a generic receptor binding seg- ment on the cell surface.	38
Figure	8: Relationship between EPO levels and Hct in pregnancy and on day 7 postpartum.	50
Figure	9: Northern analysis of human fetal liver m RNA.	55

Figure	10: Nucleotide and amino acid sequence of an EPO fetal liver c DNA.	57
Figure	11: Structure of the EPO gene.	59
Figure	12: Plasma levels of EPO after intravenous and subcutaneous administration of 40 IU/kg r-Hu EPO thrice weekly.	67
Figure	13: Median hematocrit versus number of days on r-Hu EPO in predialysis patients.	69
Figure	14: Serum ferritin concentration during the correction of anemia by r-Hu EPO.	80
Figure	15: Changes in the Hct during the treatment period according to the serum level of endogenous EPO.	92
Figure	16: Variation of Hb and reticulocyte count with therapy in pure red cell aplasia	104
Figure	17: Reticulocyte count before and after onset of r-Hu EPO treatment in postpartum anemia.	107
Figure	18: Increase in Hb in postpartum anemia with r-Hu EPO treatment	108
Figure	19: R-Hu EPO treatment in Gaucher's disease.	127

List of Tables

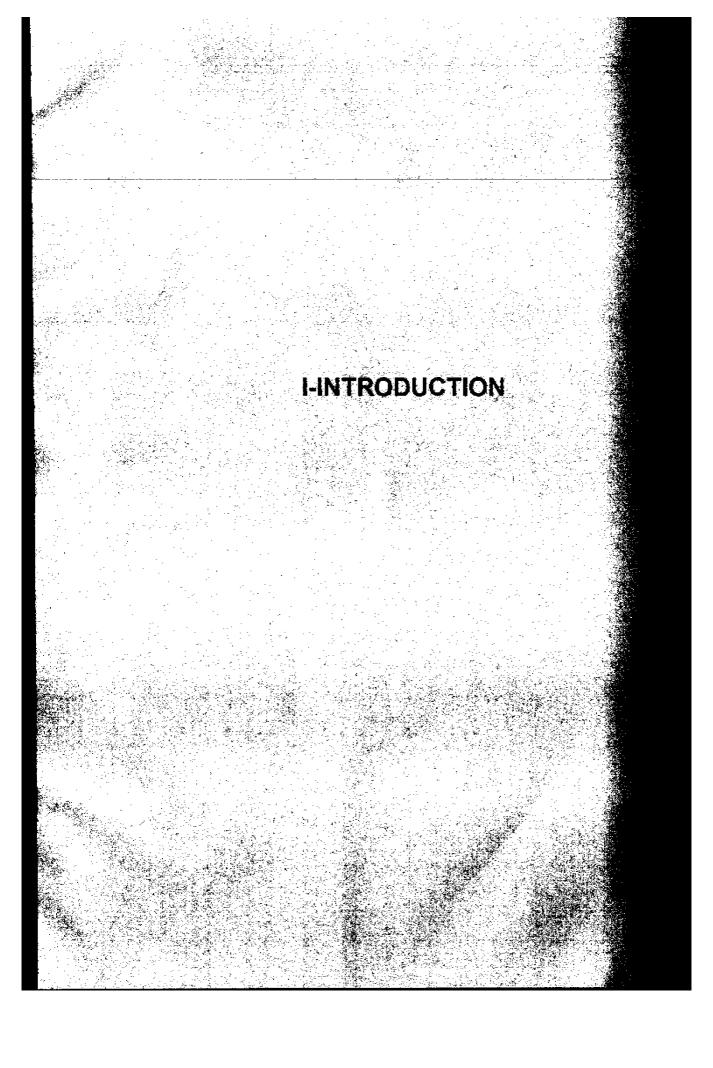

		pag
Table	1: Price of 4000 U of recombinant human erythropoietin (r-Hu EPO) to providers by country, December, 1989.	61
Table	2: Clinical benefits of r-Hu EPO.	70
Table	3: Common adverse effects of r-Hu EPO.	74
Table	4: Possible mechanisms of resistance to r-Hu EPO.	80
Table	5: Hemoglobin, creatinine and blood pressure before and after treatment with r-Hu EPO.	83
Table	6: Characteristics of patients with myelodysplatic disease treated with escalating doses of subcutaneous r-Hu EPO.	96
Table	7: Characteristics of patients with hematologic stem cell disorders treated with subcutaneous r-Hu EPO.	96
Table	8: Hematologic indices of patients with postpartum anemia treated with r-Hu EPO.	109
Table	9: Evolution of hematologic parameters during r-Hu EPO treatment of beta thalassemia.	117

Table	10: Evolution of trichloroacetic acid insoluble radio	118
	activity and B minor globin chain synthesis during	
	r-Hu EPO treatment of beta thalassemia.	
Table	11: Red blood cell parameters and hemoglobin analysis	119
	in 3 patients with beta thalassemia intermedia.	
Table	12: Percentage of F reticulocytes, F cells and	120
	hemoglobin F before, during and after r-Hu EPO	
	treatment of R thalassemia	

AIM OF THE WORK

The aim of the work is to review the mode of synthesis, genetics, chemistry, physiology, regulation and clinical applications of erythropoietin.

The use of recombinant human erythropoletic in the therapy of different types of anemia will also be reviewed.

1- INTRODUCTION

Normal erythropolesis is regulated and maintained by a glycoprotein hormone, erythropoletin (EPO) which is synthesized mainly in the kidneys in response to anemia and hypoxia.

Renal synthesis of erythropoietin is regulated by a negative feedback system. Decrease in the concentration of hemoglobin in the blood leads to reduction in the tissue oxygen tension within the kidney. Tissue oxygen tension depends on the relative rates of oxygen supply and demand. Oxygen supply is a complex function of interacting, but semi-independent variables, including blood flow, blood hemoglobin concentration, hemoglobin oxygen saturation and hemoglobin oxygen affinity. Each of these functions may be altered to compensate for a deficiency in one of the others. For example, in severe anemia cardiac output and respiratory rate may increase, and hemoglobin oxygen affinity may be reduced. Conversly, in respiratory insufficiency, secondary polycythemia occurs.

Despite the influence of cardiovascular and respiratory adjustments, tissue oxygen tension decreases roughly in proportion to the degree of anemia. The decrease in the tissue oxygen tension (tissue hypoxia) is sensed by the kidney's oxygen sensor. The kidney responds by increasing erythropoietin.

Red cell progenitors in the bone marrow possess receptors for EPO and are stimulated to proliferate and differentiate. This leads to an increase in the red cell mass (The erythron) and oxygen carrying capacity. The improved tissue