

EFFECT OF RADIATION TREATMENT ON NUTRITIVE VALUE OF FOULTRY WASTES

Ву

SALWA ZAKARIA MAHMOUD

A thesis submitted in partial fulfilment

of

The requirements for the degree of

676.c876 5. Z

DOCTOR OF PHILOSOPHY

In

Agricultural Science

(Animal Nutrition)

49625 C

Department of Animal Production

Faculty of Agriculture

Ain Shams University

1993

APPROVAL SHEET

EFFECT OF RADIATION TREATMENT ON NUTRITIVE VALUE OF POULTRY WASTES

By

SALWA ZAKARIA WAMMOUD

B. Sc. Agric. (Animal production) 1976 Ain Shams Univ.

M. Sc. Agric. (Animal Nutrition) 1983 Ain Shams Univ.

Thesis for Ph. D. degree has been approved by:

Prof. Dr. H. Khattab. Prof. of Animal Nutrition of
Department of Animal Production Hamily K. Sufficients

Date of examination: 6/5 1993.

ACKNOWLEDGEMENTS

The author would like to express her deep gratitude and appreciation for the valuable assistances technical advice, encouragement and supervision for Prof. Dr. M.A. El-Ashry, Prof. of animal nutrition and Head of animal production department, Faculty of Agriculture, Ain Shams University.

I wish to express my sincere appreciation to Prof. Dr. Hamed Roushdy El-Kaddy, Emeritus Professor at National Center for Radiation Research and Technology for being interested in the subject, his kind help and provision of all facilities and for his useful critics.

Deep gratitude is due to Prof. Dr. Hussien Soliman Prof. of animal Nutrition, Department of animal production, Faculty of Agriculture, Ain shams University for useful advice, for reading the manuscript and encouragement by every possible mean.

Special thanks are extended to prof. Dr. R.M. Yousri Prof. of Biochem and Nutrition of the National center for Radiation Research and Technology for his kind help and providing valuable facilities.

I'm sincerely greatful and thankful to Dr. Ali Hmad Ass. Prof. of Microbiology Dept. of National center for radiation research and Technology and Dr. Bothaina Mohmed Youssef of Microbiology Dept. of National center for radiation research and Technology for their help in the microbiological studies in this work.

Also I would like to thank Dr. Hamdy Elsayed, Lecturer of animal nutrition, Department of animal production, Faculty of Agriculture, Ain Shams University for his help in protozoa count.

Recording my deep thanks to Dr. Kamel Elwan Dr. of animal physiology of Department of Radiobiology Nuclear-research center Atomic Energy Authority, for his kind help in blood biochemical analysis.

Finally I'm extremely grateful to my family and my husband for the great help in care of our son and for encouragement during this work.

EFFECT OF RADIATION TREATMENTS ON NUTRITIVE VALUE OF POULTRY WASTES

Ву

Salwa Zakaria Mahmoud

B.Sc. Agric. (Animal Production) 1976 Ain Shams Univ.

M.Sc. Agric. (Animal Nutrition) 1983 Ain Shams Univ. Under The Supervision of:-

Prof. Dr. Mohamed A. El-Ashry.

Prof. of Animal Nutrition

Prof. Dr. Hamed R. El-Kaddy.

Emeritus Prof. at National Center for Radiation Research and Technology

Prof. Dr. Hussian S. Soliman.

Prof. of Animal Nutrition.

ABSTRACT

Three doses of gamma rays induced in broiler litter compared with oven dried and sun dried broiler litter, to study their effect on pathogenic microorganisms. In-vitrostudies and in-vivo studies were carried out on mature goats to study the effect of irradiation on different levels of broiler litter based rations. Five mature goats were used in five experimental diets by statistical system of repeated measurements. Each one fed on T, control 0% BL, T₂ containing 15% unirradiated BL from CFM (DM). T₃ containing 15% irradiated BL (with 10 KGy) from CFM DM, T₄

containing 30% unirradtiated BL from CFM DM, T_5 containing 30% irradiated BL (with 10 KGy) from CFM DM.

The objectives were to study the effect of radiation treatments on pathogenic microorganisms might included in BL and to study the effect of BL irradiated and non irradiated inclusion in diets on digestion coefficients of the rations and some rumen parameters. Results showed that the best treatments affected on pathogenic was radiation with doses 10, 20 KGy and oven drying. No significant difference was detected between different treatments on digestion coefficients except ether extract Difference in ammonia nitrogen concentrations in rumen liquor was significant (P< 0.01) due to treatments. Significant difference was found between treatments effect on total nitrogen, non protein nitrogen and true protein nitrogen concentration in rumen liquor (P< 0.05). Protozoa count showed significant difference between treatments (P<.05). Total serum protein, Albumin, globulin A/G ratio cholesterol, GPT and T4 had no significant difference between treatments. While serum urea, creatin, GOT, T3 were significant between treatments.

Results of the present study indicate also that radiation treatments had significant effect on pathogenic microor-ganism and replacing different levels of BL instead of feed mixture DM in rations for ruminants had no negative effect on the health of animal.

LIST OF ABBREVIATIONS

ANOVA Analysis of variance.

APW Autoclaved poultry waste

ASH Crude ash.

BL Broiler litter.

CFM Concentrate feed mixture.

CLD Cage layer dropping.

CP Crude protein.

DBE Dehydrated broiler excreta

DM Dry matter.

EE Ether extract.

g gram.

GOT Glutamic - oxaloacatic transaminase.

GPT Glutamic - pyruvic transaminase.

Gy Gray = 100 rad.

KGy Kilogray = 100 Kilorad.

Mrad Megarad = Million rad.

N Nitrogen.

NB Nitrogen balance.

NPN Non protein nitrogen.

OM Organic matter.

P Probability.

PW Poultry waste

Rad The basic unit of absorbed dose of ionizing radiation. It equals 100 erg of absorbed energy

per g of absorbing.

TP Total protein.

TN Total nitrogen.

TPN True protein nitrogen.

CONTENTS

	Page
Introduction	
Review of Literature	2
1- Quantities of animal waste	2
2- Health aspects of feeding animal wastes	3
3- Processing of aniamal wastes and its effects on	
pathogens	6
3.1. Artifical drying	8
3.2. Radiation	9
3.3. The effect of ionizing radiation on bacterial	
cell	10
4- Econmic approaches on using animal wastes	14
5- Chemical composition	16
5.1. Proximate composition	16
5.2. Effect of processing method of broiler litter	
on chemical composition	20
5.3. Effect of heating temperature on the chemical	
composition of poultry waste	22
5.4. Effect of storage period on the chemical	
composition of poultry wastes	24
6- Nutritional quality of poultry waste	25
6.1. Effect of poultry waste inclusion in rations	
for ruminants	25
6.1.1. Nutrients digestibility	25

	Page
6.1.2. Nitrogen utilization of ration containing	
poultry waste	33
7- Biochemical constituents of blood	36
7.1. Serum protein	36
7.2. Serum cholesterol	38
7.3. Serum transaminases	39
7.4. Serum thyroid hormones	41
Materials and Methods	
- Irradiation treatments	46
* Pathogenic microorganism detection	47
- Detection of salmonella	47
- Total coliform	49
- Total fecal coliform	49
- Total bacterial count	50
* Chemical composition	51
* <u>In-vitro</u> evaluation	51
* <u>In-vivo</u> evaluation	52
Digestion trials	
Digestibility studies & Nutritive value	53 ⁻
- Sampling of rumen liquor	54
- Protozoa count	55
- Determination of serum proteins	55
Serum total protein	55
Serum Albumine	57
Corum alchulina	59

Pa	ge
Serum urea 5	9
Serum creatinine 6	0
Serum cholestrol 6	1
Serum GOT - GPT 6	3
	6 .
_	8
	59
	59
	70
1.3. Faecal coliform	70
1.4. Total bacterial count	72
2. Effect of irradiation on the chemical composition	
of broiler litter	73
3. In-vitro studies	79
	84
4.1. Chemical composition of rations	84
4.2. Nutrients digestibility and nutritive value	86
	94
	97
	98
6.1. Ammonia nitrogen (NH ₃ -N)	98
6.2. Total nitrogen content	103
6.3. Non-protein nitrogen content	107
6.4. True protein nitrogen content	112

			Page
7.	Effect of supplementing rations by briole	r litter	
	on blood serum characteristics of goats .		118
	7.1. Serum total protein		118
	7.2. Serum Albumin		121
	7.3. Serum globulin		121
	7.4. Serum Albumin/Globulin ratio		125
	7.5. Serum urea		128
	7.6. Serum creatinine		131
	7.7. Serum total cholesterol		131
	7.8. Serum GOT		136
	7.9. Serum GPT		136
	1.10 Thyroid Hormones		141
នបាន	IMMARY		146
CONCLUSION			
			150

LIST OF TABLES

			****	_
Table	(1)	:	Livestock and poultry waste production in the	
			united states in 1974 2	
Table	(2)	:	Pathogens transmissible to man	
Table	(3)	:	Pathogens transmissible to other animal 4	
Table	(4)	:	Proximate composition of different poultry	
			wastes as reported by previous investigators 17	
Table	(5)	:	Effect of processing methods on the chemical	
			composition of broiler litter 21	•
Table	(6)	:	The effect of heating temperature on composi-	
			tion of (PW) 23	
Table	(7)	:	Effect of storage period length of fresh hen	
			droppings on CP content of dried poultry wastes 24	
Table	(8)	:	Digestibility for weathers fed rations contain-	
			ing different levels of DBE 27	
Table	(9)	:	Digestibility for weathers fed diets supplem-	
			ented with cottonseed meal or DPE 29	!
Table	(10)	:	<u>In-vivo</u> digestibilities of animal manures by	
			sheep	ì
Table	(11)	:	Effect of different processing methods on the	
			nutrients digestibility 32	!
Table	(12)	:	Effect of replacing CFM protein by different	
			levels of broiler litter on the nutrients	
			digestibility	,

			Page
Table	(13):	Effect of radiation and other treatments on	
		pathogenic microorganisms count in broiler	
		litter	71
Table	(14):	The chemical composition of the ingredients	
		of the experimental rations	74
Table	(15):	Analysis of variance for dry matter content	
		of BL irradiated with 0, 5, 10 KGy	76
Table	(16):	Analysis of variance for the CP contents of	
		BL irradiated with 0, 5, 10 KGy	76
Table	(17):	Analysis of variance for EE contents of BL	
		irradiated with 0, 5, 10 KGy	77
Table	(18):	Analysis of variance for Ash contents of BL	
		irradiated with 0, 5, 10 KGy	. 7 7
Table	(19):	Analysis of variance for organic matter cont-	
		ents of BL irradiated with 0, 5, 10 KGy	. 78
Table	(20):	Analysis of variance of the curde fiber cont-	
		ent of BL irradiated with 0, 5, 10 KGy	. 78
Table	(21):	In vitro digestion coefficients for dry matter	
		and organic matter of different samples conta-	
		ining different levels of BL treated with sun	
		drying and irradiated with 10 KGy	. 80

		ray	_
Table	(22):	Analysis of variance of in-vitro dry matter	
		disappearance of different rations combinations83	3
Table	(23):	Analysis of variance of in-vitro organic matter	
		disappearance of different rations combinations 83	3
Table	(24):	Calculated chemical composition of rations used	
		in <u>in-vivo</u> studies85	5
Table	(25):	Apparent digestibility of rations containing	
		different levels of BL8	7
Table	(26):	Analysis of variance of DM digestibility for	
		mature goats received different dietary	
		treatments 8	8
Table	(27):	Analysis of variance of OM digestibility for	
		mature goats received different dietary	
		treatments 8	8
Table	(28):	Analysis of variance of CP digestibility for	
		mature goats received different dietary	
		treatments	}2
Table	(29):	Analysis of variance of EE digestibility for	
		mature goats received different dietary	
		treatmencs	92
Table	(30):	Analysis of variance of NFE digestibility for	
		mature goats received different dietary	
		treatments	93