NAT NAT

AIN SHAMS UNIVERSITY

INSTITUTE OF ENVIRONMENTAL STUDIES AND RESEARCH

NATURAL AND BIOLOGICAL SCIENCE DEPARTMENT

RECYCLING OF SOME INDUSTRIAL BY-PRODUCTS IN THE PREPARATION OF BLENDED CEMENT

BY

Tarek Moustafa El-Sokkary Mohamed B.Sc (1984) Mansoura University

As Partial Fulfilment For The Degree of Master in Environmental Science Chemistry

91742


Supervisors

Prof.Dr. Salah A.Abo El-Enein Prof. of Physical Chemistry, &Building Materials, Faculty of Science, Ain Shams University Prof.Dr. H.El-Didamony Ahmed
Prof. of Inorganic Chemistry,
Faculty of Science,
Zagazig University

Dr, Ali H. Ali
Associate Prof. of Physical Chemistry
Building, Housing & Planning Research Center

(1996)

ACKNOWLEDGEMENT

I am deeply thankful to **ALLAH**, by the grace of whom the progress and success of this work was possible.

The author wishes to express his heartful and great appreciation to **Prof. Dr. Salah A. Abo El-Enien**, Professor of physical chemistry, and building materials, Faculty of Science, Ain Shams University, and **Prof. Dr. Hamdy El-Didamony**, Professor of inorganic chemistry, Department of Chemistry, Faculty of Science. Zagazig University, for suggesting the point of the research, critical advice, useful guidance, continuous supervision and their great help in the interpretation of the results.

The author expresses his deepest gratitude to Assiss. Prof. Ali H. Ali, Assisstant Professor in Raw Materials Department, Housing and Building Research Center, Dokki-Cairo, for his continuous interest, helpful supervision, and continuous advice offered during conducting this work.

I would like to express my greatest and deepest gratitude to **Prof. Dr. Mohamed Mamdouh Riad**, Professor, and Head of Soil Mechanics and Foundations Department, Housing and Building Research Center, and **Eng. Hisham Kamal Amin**. Geotechnical Engineer, Soil Mechanics and Foundations Department, Housing and Building Research Center for providing the facilities, helpful advice, and help in the preparation of this thesis.

I also wish to thank the staff and all the members of Soil Mechanics and Foundations Department in the Housing and Building Research Center for their help during this work.

I like to express my gratitude to his wife, **Hanan** and Son, **Ahamed** thanks for giving me the chance and the time for this challenge.

Thanks to my parents for their encouragement, praying and for guiding me to the right paths and to my mother for her great help and encouragement

Finally, I wishe to thank my uncle. Osman and my aunt. Elham for help throughout this work.

ABSTRACT

RECYCLING OF SOME INDUSTRIAL BY-PRODUCTS IN THE

PREPARATION OF BLENDED CEMENT (M.Sc. THESIS), Submitted by

Chemist: Tarek Moustafa El-Sokkary, B.Sc.(1984), Mansoura University,

Geology/Chemistry Department, Chemist in Soil Mechanics and Foundation

Department at Housing and Building Research Center, Dokki - Cairo.

The materials used in this work were cement kiln dust from the dry process, condensed silica fume (Kom-Ombo), Ordinary Portland, slag as well as Karnak cements provided from Helwan Cement Company. The effect of leaching and firing of dry cement dust on the sublimitation and removal of the alkali oxides Na_2O , K_2O as well as Cl^{\top} and SO_3 was studied . Blended cements were prepared from each type of cement with various prportions from fired as well as wet cement dust and silica fume. The Kinetics of hydration of the cement pastes such as the liberated free lime and combined water contents were determined as a function of curing time up to 90 days. Also, the water of consistency, initial and final setting times, as well as bulk density and compressive strength of hardened cement pastes were measured. It can be concluded that the washed and fired dry cement dust at 1350 °C can be used in the presence of silica fume for the activation of slag cement . Also, the raw wet cement dust can be used up to 5%in the preparation of blended cements from ordinary Portland, slag and Karnak cement . The liberated Ca(OH)2 was consumed by the condensed silica fume whereas the addition of washed and fired as well as raw wet cement dust tends to increase the liberated Ca(OH)2 which increases with the amount of added cement dust. The fired cement dust incraesas the mechanical properties of slag cement and decreases that of ordinary as well as Karnak cements.

*Key Words: O.P.C: Ordinary Portland Cement

SL.C : Slag Cement K.C : Karnak Cement

- I I I -

CONTENTS

001(121(12)	Page
ACKNOWLEDGEMENT	I
ABSTRACT	П
CONTENTS	Ш
CHAPTER I	
INTRODUCTI <u>ON</u>	1
1.1. Introductory Remarks	1
1.2. Cement Kiln Dust and its Recycling	3
1.3. Hydration of Portland and Blended Cements	8
1.4. Blended Cements	12
1.5. Effect of Alkalies on the Hydration of Cement	16
1.6. Corrosion of Reinforcement	18
1.7. The Objective of The Present Work	19
CHAPTER II	
MATERIALS AND METHODES OF INVESTIGATION	21
2.1. Starting materials	21
2.2. Leaching and firing of cement kiln dust	22
2.3. Preparation of Different Blended Cements	22
2.4. Preparation of Cement Pastes	24
2.5. Methods of Investigation	25
2.5.1. Water of consistency and setting time	25
2.5.2. Bulk density measurements	26
2.5.3. Compressive strength determination	27
2.5.4. Stopping of hydration	27
2.5.5. Chemically-combined water determination	28
2.5.6. Free lime determination	28
2.5.7. Electrochemical measurements	29
2.5.7.1. Preparation of the reinforcing steel samples	30
2.5.7.2. Preparation of the steel in paste electrodes	31
2.5.7.3. Curing in humidity chamber	32
2.5.7.4. Curing in sea water	32
CHAPTER III	
RESULTS AND DISCUSSION	33
3.1. Effect of Leaching and Thermal Treatment on Chemical and	
Mineralogical Composition of Cement Kiln Dust	33
3.2. Chemical Composition of Washed, Fired Cement Kiln Dust	36
3.3. Mineralogical Composition of Washed, Fired Cement Kiln Dust	37
3.4.Effect of Washed.Then Fired Cement Klin Dust on the Properties of	
Different Cements	39
3.4.1. Ordinary Portland Cement	39
3.4.1.1. Water of consistency and setting time	39
3.4.1.2. Free lime content	43
3.4.1.3. Chemically-combined water content	47

3.4.1.4. Bulk density	53
3.4.1.5. Compressive strength	57
3.4.2. Slag Cement	60
3.4.2.1. Water of consistency and setting time	60
3.4.2.2. Free lime content	64
3.4.2.3. Chemically-combined water content	66
3.4.2.4. Bulk density	68
3.4.2.5. Compressive strength	70
3.4.3. Karnak Cement "Sand Cement"	72
3.4.3.1. Water of of consistency and setting time	72
3.4.3.2. Free lime content	74
3.4.3.3. Chemically-combined water content	76
3.4.3.4. Bulk density	78
3.4.3.5. Compressive strength	80
3.5. Effect of Raw Wet Cement Kiln Dust on the Properties of	
Different Cements	82
3.5.1. Ordinary Portland Cement	82
3.5.1.1. Water of consistency and setting time	84
3.5.1.2. Free lime content	87
3.5.1.3. Chemically-combined water content	91
3.5.1.4. Bulk density	95
3.5.1.5. Compressive strength	99
3.5.2. Slag Cement	103
3.5.2.1. Water of consistency and setting time	105
3.5.2.2. Free lime content	108
3.5.2.3. Chemically-combined water content	112
3.5.2.4. Bulk density 3.5.2.5. Compressive strength	116
3.5.3. Karank Cement "Sand Cement"	120
3.5.3.1. Water of consistency and setting time	124
3.5.3.2. Free lime content	126 130
3.5.3.2. Tree fine content 3.5.3.3. Chemically-combined water content	130
3.5.3.4. Bulk density	134
3.5.3.5. Compressive strength	140
3.6. Corrosion Behaviour of Reinforcing Steel Embedded in	140
Different Mixes of Hardened Cement Pastes Cured in	
Aggressive Environments	144
3.6.1. Anodic polarization behaviour of reinforcing steel	
embedded in different mixes of hardened cement	
pastes cured in humidity chamber	148
3.6.2. Anodic polarization behaviour of reinforcing steel	
embedded in different mixes of hardened cement	
pastes cured in sea water	151
CHAPTER IV	
SUMMARY AND CONCLUSION	156
REFERENCES	161
ARABIC SUMMARY	

CHAPTER I INTRODUCTION

CHAPTER I

INTRODUCTION

1.1. Introductory Remarks

The word "cement" denotes any kind of binding agent. This definition includes a wide variety of substances having little in common with one another but adhesiveness. However, materials most commonly associated with this word are hydraulic cements of which Portland cement is the most familiar. The use of cement is very old. The ancient Egyptians used calcined impure gypsum. The Greeks and Romans used calcinated limestone and late learned to add to lime and water, sand and crushed stone or bricks.

Portland cement is manufactured by intimately mixing a calcareous (lime-containing) and argillaceous (clay-containing) materials which can be done either in water (wet process) or in dry (dry process). After mixing and grinding of the raw mixture it is burned at a clinkering temperature, up to 1450 °C. The product of the rotary kiln is called cement clinker, which is cooled, mixed with a few percent of gypsum and ground to a very fine powder.

The main constituents exist in the cement clinker are: -

Tricalcium silicate 3 CaO. SiO_{2.} (C₃S) "Alite"

β-Dicalcium silicate β-2CaO.SiO₂ (C₂S) "Belite"

Tricalcium aluminate 3 CaO.Al₂O₃ (C₃A)

Tetracalcium aluminoferrite 4 CaO.Al₂O₃.Fe₂O₃ (C₄AF)

These four compounds occur together to the extent of about (90%) of the cement by weight with some free CaO, MgO, Na₂O, K_2O . SO₃ and few other trace elements [(Lee,1970), (Taylor,1964)].

Several types of Portland cement are manufactured having different characteristics. The most important standard types of Portland cement are (Neville, 1981):-

* Normal or Ordinary Portland Cement: This is a general purpose cement, suitable for all uses when the special properties of other types are not required. The cooled clinker typically contains four compounds in the approximate proportions (Neville.1981).

Tricalcium silicate , (C_3S)	= 55%
β -Dicalcium silicate, β -(C_2S)	= 20%
Tricalcium aluminate, (C ₃ A)	= 10%
Tetracalcium aluminate ferrite(C ₄ AF)	= 10%

- * High-Early Strength Portland Cement: This cement is used when early strength is required. It is ground to a higher fineness than ordinary Portland cement which is usually ground to a specific surface area of 2500 to 3000 cm²/g compared with at least 3300 to 4000 cm²/g for this type.
- * Low Heat Portland Cement: This is a special cement for use where the amount and rate of heat generation must be kept very low. It is used in the construction of massive structures such as dams. This type of cement has a strict composition where the maximum C_3A is limited to 7 % whereas the β - C_2S should not be less than 40 % (Neville,1981).
- * Sulphate Resisting Portland Cement: This cement is used only in structures exposed to severe sulphate action. It is manufactured in the same way as Portland cement, except that the iron content is increased to reduce the percentage of tricalcium aluminate to below the 3.0% and the SO₃ content to 2.5%