

OPTICAL PHASE PROPERTIES OF THIN FILMS AND ROLE OF OPTICAL PHASE IN LENGTH MEASUREMENT

A THESIS

submitted for the Degree of DOCTOR OF PHILOSOPA

IN PHYSICS

TO

Faculty of Science Ain Shams university Cairo

49 504

Presented by FEDIA ABD ELAZEZ IBRAHEEM


(M.Sc.)

National Institute For Standards

1994

7.30.411

بِنِيْ النَّالِحُ الْجَيْرَا فِي الْمُعْرَالِ الْمُعْرَالِ الْمُعْرَالِ الْمُعْرَالِ الْمُعْرَالِ الْمُعْرَالِ

صدق الله العظيم

ACKNOWLEDGEMENT

I would like to express my thanks and gratitude to Prof. Dr. N. Barakat professor of experimental physics at Ain Shams University for suggesting the problem investigated and for his continuous supervision throughout the work.

I would like to express my thanks and gratitude to Prof.Dr. M.M.Ammar president of the National Institute for Standards for his unfailing encouragement, assistance and rendering many facilities.

I would like to express my sincere thanks to Prof. Dr. Samira Mokhtar professor of Optical Metrology for her guidance, encouragement and helpfull discussions.

My thanks are due to Prof. Dr. M.S. Shaalan Head of the Optical Metrology Devision of NIS where this work has been performed.

Thanks are due to Prof. Dr. M.Sobea Head of the Mechanics Branch of NIS for his encouragement.

Prof. Dr. M.S.El Bahrawi is also thanked for his assistance.

I would like to express my appreciation to my colleague M.Amer for his unfailing help and assistance.

CONTENTS

	Page
Summary	i
CHAPTER I	
DETERMINATION OF THE EFFECTIVE OPTICAL CONSTANTS	
OF SILVER THIN FILMS	
I.1. Introduction, previous work and aim of	
present work	1
I.2. Theoretical derivation of the equations	
representing the effective optical constants	
and the phase change at reflection air/film $\beta 2$,	
substrate/film β 1 and in transmission γ from	
the experimentally determined values of R1, R2	
and T	7
I.3. Detemination of the effective optical constants	
from reflectivity and transmissivity measurements	
for silver films of thickness ranging from 85 to	
470 Å for λ 4000, 5500 and 7000 Å	13
I.3.1 Experimental variation of reflectivity and	
transmissivity with thickness and wavelength for	
evaporated silver thin films	13
I.3.2 Computed effective optical constants deduced from	
R R and T	1.5

1.4. Computed optical phase properties β_1 , β_2 and γ and
their variation with thickness for λ 4000, 5500
and 7000 Å
I.5. Deduction of the optical constants from
determination of the change of phase in
transmission for comaratively thick films of
silver, antimony and bismouth
I.6. Deduction of the effective optical constants from
the structural models of thin films using electron
microscopy
I.6.1 The filling factor of silver films from
transmission electron micrographs and its
variation with thickness
I.6.2 Deduction of the effective optical constants and
their variation with filling factor for λ 4000, 5500
and 7000 Å based on Maxwell-Garnett theory 24
I.6.3 Deduction of the effective optical constants and
their variation with thickness for λ 4000, 5500
and 7000 Å based on Schopper's model 28

CHAPTER II

THE OPTICAL PHASE FUNCTION F OF THIN FILMS

AND

ITS ROLE IN FRINGE INTENSITY DISTRIBUTION AT REFLECTION	
II.1. Introduction and Previous work	35
II.2. Theoretical studies on fringe intensity profile	
at reflection	38
II.3. Formation of images resulting from a wedge	
interferometer at reflection and the effect of	
their intensity variation on the formation of	
transmission-like and reflected system	51
II.4. Determination of the optical phase function F	
of silver and manganese films	54
II.4.1 Method I	54
II.4.2 Method II	56
II.4.3 Experimental and theoretical intensity profile	
of fringes for silver and manganese	59
II.4.4 Dependence of the optical phase function F on	
wavelength in the visible region	61

CHAPTER III

THE ROLE OF OPTICAL PROPERTIES

IN

CALIBRATION OF GAUGE BLOCKS

III.1. Introduction and previous work	64
III.2. Reflection at a metalic surface	67
III.2.1 Expression of the chage of phase at reflection.	68
III.3. The sign of change of phase at reflection and its effect on measurement of end	
stansards	70
III.4. The phase dispersion	74
III.5. Experimental calibration of gauge blocks	80
III.5.1 The optical path of Köster interference	
comparator	82
III.5.2 Principle of Köster comparator	84
III.5.3 The process of wringing	87

111.5.4	Experimental determination of the error due to	
	the change of phase at reflection air/steel and	
	air/glass in calibration of gauge block length.	88
III.6.	Evaluation of the phase dispersion air/steel	92
Referen	ces	95

SUMMARY

SUMMARY

The field of the present investigation comprises determination of some optical phase properties of thin silver and manganese films and the role of phase properties in length measurement.

Chapter I deals with optical phase properties of thin films and their relation to the effective optical constants. Thin thermally evaporated silver films were prepared and their effective optical constants ne and ke were determined. This was achieved by two methods:

a) Deduction from experimentally measured Reflectivity R2 at air/film, R1 at substrate/film and Transmissivity T of silver films and at three wavelengths.

b) Calculated from formulae based on proposed models for the structure of the thin films. The optical phase properties determined are the phase change at reflection air/film β 2, substrate/film β 1 and the phase change in transmission γ through the metallic film.

Electron microscopic examination of such films served to provide information necessary to apply both Maxwell Garnet theory, based on the presence of spherical particles forming the films and Schopper's modification of the previous model, based on the existence of ellipsoids of revolution characterized by their $\frac{b}{a}$ ratio

between minor and major axes, termed f, and its mode of distribution around a prefered value \overline{f} . Applying Schopper's model to the specified range of thickness for silver films from 85 to 145 Å, the value of \overline{f} was chosen to lie in the range 0.9-1.0. Such choice is in accordance with electron microscopic findings. The volume fraction q which is the percentage of bulk material to geometrical volume has been utilized to calculate the effective optical constants. Critical comparison between the values obtained for ne and ke for silver films over the thickness range $85-470~\text{Å}^\circ$ applying the three previously mentioned approaches has been performed and the result reported.

The optical phase properties of silver films namely $\beta 1$, $\beta 2$ and γ have been calculated, based on the values of ne and ke.

This chapter includes, also, the deduction of the optical constants of comparatively thick films silver, antimony and bismuth from exprimentally determined values of the change οf phase transmission through these films.

Chapter II deals with the optical phase function F of thin films and its role in fringe intensity distribution at reflection. It is known that the

optical phase function F which equals $(2\gamma - \beta_1 - \beta_2)$ controls the intensity distribution of multiple beam reflected fringes. In multiple beam Fizeau reflection localized on the Feussner surface of zero order, the F value of the metallic layer coating the upper component οf the interferometer plays important role in the formation of the interference systems. #Dark sharp symmetrical fringes on a bright background which is a valuable tool in measuring thickness of thin films to a high degree of accuracy are formed only when $|F| = (2n+1) \pi$, emphasizing one aspect of the role of optical phase properties in length measurements. When $|F| \neq (2n+1) \pi$, fringe intensity distribution is no longer following the complementary Airy summation in transmission. Partial reflection - like fringe distribution takes place as the |F| value deviates from the previous value. They change to partial transmission like. reaching symmetrical transmission - like fringes at reflection when $|F| = 2n\pi$. Some application of such fringe system have been reported.

Formation of images resulting from a wedge interferometer and contributing to the multiple beam intensity distribution has been investigated and

accomplished. The relation between the intensity ratios of the images and the formation of transmission-like, partial transmission and reflected systems has been investigated.

In the present work, the variation of the optical phase function F with thickness has been investigated for silver films of thickness from 85 to 470 Å and for manganese films from 155 to 685 \mathring{A} for λ 5461 \mathring{A} . Two methods have been performed to determine the optical phase function F. The first is based on computing the fringe intensity distribution at reflection different values of F and phase difference A between successive interfering beams takeing into account the contribution of the change of phase at reflection air/Ag coating the two components of the interferometer and comparing it with the experimental microphotometric intensity distribution, followed by itterations. The second is based on computing the phase at both Imax and Imin and determining the difference $(\Delta_{I_{max}} - \Delta_{I_{min}})$. Now $(\Delta_1 - \Delta_2) = 2 \psi - \pi$, the values of ψ for each thin silver film was computed for F value ranging from 0 to 2π . Determining Δ_{12} which is the difference in phase at Imax and Imin enabled calculating the angle ψ and consequently the corresponding F value for the thin

silver coating of the upper component of the interferometer forming the fringes at reflection. This is based on the fact that the angle ψ is a function of a trigonometric function of F in terms of r1, r2, r3 and T1. Comparison between the F values resulting from the two previously mentioned methods and that based on determining experimentally each phase property namely γ , β 1 and β 2 is presented. Agreement in F values for silver thin films of specified thickness is shown and tabulated.

Chapter III deals with the role of the optical phase properties in length measurements. In the process of calibration of gauge blocks, the secondary standards of length, the Köster interference comparator is often used. The steel gauge block is wrung to a flat plate of either glass, quartz or steel and introduced in one arm of the interferometer./Two systems of interference are formed, one belongs to the upper surface of the gauge block and the reference mirror while the other system results from light rays reflected from the upper surface of the substrate to which the gauge block is wrung and the reference mirror. A fringe shift appears between the two systems of stright line fringes with two — beam intensity distribution following a cosine