AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

EFFECT OF BLAST LOADINGS ON THE STRUCTURAL BEHAVIOUR OF BUILDINGS

THESIS

Submitted in Partial Fulfillment of the Requirements

of the degree of

Master of Science

in Civil Engineering (Structural)

By

KHALED MOHAMED ABDEL - GAWAD

B.sc. Civil Engineering 1989

Under the Supervision of

Dr. MOSTAFA KAMEL ZIDAN

Prof. of Structural Engineering

Ain Shams University

Dr. M. Noor EL-DIN FAYED

Assoc. Prof. of Structural Engineering

Ain Shams University

Examiners Commitee

Name, Title and Affiliation

signature

1- Gen. Dr. Ahmed Abdel Migid Agour Assistant of the Manager of Military Technical Collage For education affairs.

A Adjo

2- Dr. Ahmed Abdel Moneim Korashy prof. of structural Engineering Ain Shams University. A Korashy

3- Dr. Mostafa Kamel Zidan prof. Of structural Engineering Ain Shams University .

1 27 to

4- Dr. Mohamed Noor EL-Din Fayed Assoc. prof. Of structural Engineering Ain Shams University . Noor Ful

Date: 4/9/1995

STATEMENT

This thesis is submitted to Ain Shams University for the degree of Master of Science in Civil Engineering (Structural Department).

The work included in this thesis was carried out by the author in the Department of Structural Engineering, Ain Shams University, from December 1991 to September 1995.

No part of this thesis has been submitted for a degree of a qualification at any other university or institute.

Date: 4/9/1995

Signature: Khaled M. Abdul gawag

Name: Khaled M. Abdel Gawad

INFORMATIONS

ABOUT THE RESEARCHER

Name: Khaled Mohamed Abdel Gawad.

Date of birth: September, 26, 1966.

Place of birth: Cairo, Egypt.

Qualifications:

-B.Sc. Civil Engineering 1989 (very good).

-A training course in care Blasting from Military engineers institute.

-Teaching experience through two years in High technical institute in Banha.

Current Job: Police officer in Police Academy.

ABSTRACT :

The thesis starts by giving a background introduction about the ingredients and characteristics of the chemical explosives and the behaviour of the output gass pressures or seismic vibrations . The factors affecting the transmision of these outputs are illustrated either the explosion is in air, underground, or underwater. Also, the thesis presents some of the previous theoretical models for simulating the explosion load and denoting the procedures for these methods to calculate all characteristics of this load. The thesis presents an experimental work which was carried out by the researcher in different locations to record the dynamic load output from some explosions by using special measuring instruments at different distances from the explosion source. A discussion of these experimental results compared with the theoretical models results (including analytical study for all parameters affecting the loading behaviour) is presented. Some numerical applications to calculate the structures response due to explosions are illustrated using the available theoretical models through a computer program written in fortran language to simulate the dynamic response of stuctural elements. Finally, the thesis conclusions are presented.

ACKNOWLEDGMENT

I wish to express my appreciation to Dr. Mostafa Kamel Zidan, Professor of Structural Engineering, Faculty of Engineering, Ain Shams University, for his suppervision and encouragement offered through this research.

It is with sincere appreciation and gratitude, that I thank Dr. Mohamed Noor El-Din Fayed, Associate Professor of Structural Engineering, Faculty of Engineering, Ain Shams University, who initiated the research idea and whose meticulous supervision and continuous encouragement made the research completion possible.

Finally, I wish to express a special "thank you "to my family, for their unyielding moral support, which contributed greatly towards completing this research.

CONTENTS

]	Page
EXAMINERS COMMITTEE	i
STATEMENT	ii
INFORMATIONS ABOUT RESEARCHER	iii
ABSTRACT	iv
ACKNOWLEGMENTS	v
CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	x
CHAPTER (1): INTRODUCTION.	
1.1 General	. 1
1.2 Object of present investigation	. 3
1.3 Outline of thesis	. 3
CHAPTER (2) :BACKGROUND INFORMATION	
ABOUT EXPLOSION.	
2.1 INTRODUCTION	5
2.1.1 Chemical explosive	5
2.1.2 Chemical explosive ingradients	6
2.1.3 Explosive energy	6
2.2 BLASTING IN AIR	7
2.2.1 Plasting pressure out.put	7
2.2.2 Ideal and actual Blast waves	7
2.2.3 Multiple Explosions	11
2.2.4 Shock wave motion	11
2.2.5 Reflection and diffraction	12

1	Page
2.2.6 Structure response	12
2.2.7 Primary fragments	13
2.3 BLASTING UNDERGROUND	13
2.3.1 Seismic energy and vibration consideration	13
2.3.2 Ground vibrations	16
2.3.3 Rock blasting	20
2.3.4 Standards and procedures for environmental	
control	22
2.4 BLASTING UNDERWATER	24
2.4.1 Shock wave typical propagation and parameters	25
2.4.2 Underwater explosions characteristics	27
2.4.3 Flow and development of underwater explosions.	28
2.4.4 Pressure - time relation	30
2.4.5 Pressure - distance relation	30
CHAPTER(3): THEORETICAL MODELS FOR SIMUL	LATING
BLAST LOADS.	
3.1 INTRODUCTION	46
3.2 THE MODELS FOR BLASTING LOAD IN AIR	46
3.3 THE MODELS FOR BLASTING LOAD	
UNDERGROUND	64
3.4 THE MODELS FOR BLASTING LOAD	
UNDERWATER	68
CHAPTER (4): EXPERIMENTAL WORK.	
4.1 INTRODUCTION	89
4.2 INSTRUMENTATIONS	
	89
4.3 PREPARATIONS FOR TESTING	89 91

	rage
4.5 DISCUSSION FOR EXPERIMENTAL RESULTS	94
CHAPTER (5): STRUCTURAL RESPONSE ANALYSIS.	
5.1 TIME DOMAIN DYNAMIC ANALYSIS	117
5.2 APPLICATION TO DETERMINE STRUCTURAL	
RESPONSE OF CLAD STRUCTURE SUBJECTED	
TO UNDERGROUND EXPLOSION	123
CHAPTER (6): SUMMARY AND CONCLUSIONS.	
6.1 SUMMARY	144
6.2 CONCLUSIONS	145
REFERENCES	147
APPENDIX A	149
APPENDIX B	. 152

LIST OF TABLES

Table	Page
(2-1) Explosives Ingredients	. 32
(2-2) Relative peak pressure and positive Impulse	
for some Explosives	. 33
(3-1) Values of the coefficients in the underwater	
explosions empiric formulae	. 71
(4-1) Comparison between experimental results and	
theoretical models in area A	98
(4-2) Comparison between experimental results and	
theoretical models in area B	99
(4-3) Peak velocity vs. Scaled distance for area A	. 100
(4-4) Peak velocity vs. Scaled distance for area B	100
(5-1) Values of K ₁ for fasteners in every trough	. 131
(5-2) Correction factors to allow for the effect of	
intermediate purlins	132
(5-3) Factors to allow for number of sheet to perpendicular	
member fasteners per sheet width	133
(5-4) Structural response for structure joints	134
(5-5) The max, strutural response due to variable parameters	135

LIST OF FIGURES

Figur	e :	Page
(2-1)	Reaction states in detonating explosives	34
(2-2)	Energy release from explosives	34
(2-3)	Ideal blast wave	35
(2-4)	Actual recorded pressure - Time histories	35
(2-5)	P-T Curves produced by a cased charge	36
(2-6)	Typical non- ideal pressure traces due to ground effect .	36
(2-7)	Effect of shape of charge	37
(2-8)	Multiple peak pressures	37
(2-9)	Pressure - Time curves at selected distances from	
	a 1K g TNT charge	38
(2-10)	Diffraction of a shock front over a wall	39
(2-11)	The displacement, velocity and acceleration	
	response for a panel wall subjected to a blast load	40
(2-12)	A typical seismogram	41
(2-13)	Particle velocity - charge weight relationship	41
(2-14)	Particle velocity - distance relationship	42
(2-15)	Scaled distance versus particle velocity	42
(2-16)	Safe vibration levels	43
(2-17)	Alternative blasting - level criteria	43
(2-18)	The pressure - Time graph for underwater explosion	44
(2-19)	Underwater explosion characteristics	44
(2-20)	Movements of the gas bubble in the water	45
(2-21)	The P-T curve in a point at 1.30 m from spheric	
	1 Kg pentolite charge in water	45

Figure	age
(3-1) Ideal blasting load in air	72
(3-2) The relative charge locations	72
(3-3) Free - air burst blast environment	73
(3-4) P-t curve for free air burst	73
(3-5) Shock- wave parameters for spherical TNT	
explosion in free air at sea level	74
(3-6) Reflected pressure coefficient vs. angle of incidence	75
(3-7) Air- burst blast environment	76
(3-8) Scaled height of triple point	76
(3-9) Air- burst loads	77
(3-10) Surface burst blast environment	77
(3-11) Incident pressure and scaled incident impulse vs.	
Scaled distance for surface burst	
(hemispherical charges)	78
(3-12) Shock- wave parameters for hemispherical	
TNT surface explosion of sea level	79
(3-13) Exterior leakage pressure vs. ground	
scaled distance	80
(3-14) Barrier and cubicle configurations & parameters	81
(3-15) Scaled average unit blast impulse	
(N = 1, I/L = 0.10, h/H = 0.15)	82
(3-16) Relationship between V and $\sqrt{Q/D^{1.5}}$	83
(3-17) Relationship between V and $\ L^{1/2} / D$	84
(3-18) Relationship between V and D/ $Q^{1/3}$	85
(3-19) Relationship between V and D/O ^{1/2}	86

Figure	Page
(3-20) Relationship between V and $d/\sqrt[3]{W}$	
(Egyption Code)	87
(3-21) Guide for supposed damage could be done in	
buildings due to Explosions. (Egyption Code)	88
(4-1) Vibracorder VLR - 004	101
(4-2) Used geophones	. 101
(4-3) Blasting machine	102
(4-4) The UVS 1504 vibration monitor and its geophones	. 102
(4-5) The used Explosives	103
(4-6) The used detonators	103
(4-7) Holes pattern distribution in Rock (Exp.1)	104
(4-8) Fixation of geophones (Exp.1)	104
(4-9) Peak velocity and acceleration of a point 20m	
away from the detonation (Exp. 1)	105
(4-10) Peak velocity and acceleration of a point 40m	
away from the detonation (Exp. 1)	105
(4-11) Moment of detonation (Exp. 1)	106
(4-12) Final result for the begining of the tunnel (Exp. 1)	. 106
(4-13) Holes pattern for Exp .2	. 107
(4-14) Fixation of geophones (Exp.2)	107
(4-15) Peak velocity and acceleration of a position A (Exp. 2)	. 108
(4-16) Peak velocity and acceleration of a position B (Exp. 2)	. 108
(4-17) Moment of detonation (Exp.2)	. 109
(4-18) Result of Experiment (Exp.2)	. 109
(4-19) Peak velocity and acceleration of a point at the	
wall (Exp . 3)	110
(4-20) Fixation of geophones (Exp. 4)	111

Figure I	age
(4-21) The moment of detonation (Exp. 4)	111
(4-22) The vibration history (Exp. 4)	112
(4-23) The vibration history (Exp. 5)	113
(4-24) The vibration history (Exp. 6)	114
(4-25) Peak velocity vs. Scaled distance for experimental	
work in area A	115
(4-26) Peak velocity vs. Scaled distance for experimental	
work in area B	116
(5-1) Clad steel structure example	136
(5-2) The corrugated sheet profile	137
(5-3) The supposed link members to simulate sheeting effect	137
(5-4) The equivelant shear flexibility of panels	138
(5-5) Blasting load acting the structure	139
(5-6) Displacement response of soint (2) at x - direction	140
(5-7) Displacement response due to variable flexibility	141
(5-8) Displacement response due to variable amplitudes	142
(5-9) The max . displacement response due to variable	
velocity amplitudes with different flexibilities	
of sheeting	1//3