GENTAMICIN INDUCED NEPHROTOXICITY IN RELATION TO PLASMA LIPID PROFILE IN RATS

Thesis Submitted for the Partial Fulfillment of the Master Degree in Clinical Toxicology

By

Nabil Nassif Rezk

M.B., B.Ch.

Supervised by

67833

Prof. Dr. Sawsan Abd El-Fattah Shalaby

Professor of Forensic Medicine and Clinical Toxicology

Prof. Dr. Sanaa Abd El-Maged Sammour

Professor of Pathology

Prof. Dr. Suzan Mostafa Mahmoud

Ass. Professor of Forensic Medicine and Clinical Toxicology

Faculty of Medicine Ain Shams University 1995

Acknowledgment

My deepest gratefulness and appreciation are presented to Professor Dr. Assem Abd El-Rahim El-Habashy, Head of Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Ain Shams University, for his kind encouragement and comprehensive support.

The most sincere gratitude and gratefulness go to Professor Dr. Sawsan Abd El-Jattah Shalaby, Professor of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Ain Shams University, for her unlimited help, honest guidance and careful supervision.

My cordial thanks go to Professor Dr. Sanaa Abd El-Maged Sammour, Professor of Pathology, Faculty of Medicine, Ain Shams University, she saved neither effort nor patience in guiding me throughout the histopathological part of this thesis.

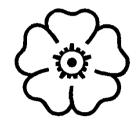
Special thanks are expressed to Professor Dr. Suzan Mostafa Mahmoud, Assistant Professor of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Ain Shams University, for her active participation, effective help and enthusiastic cooperation.

Finally, I would like to thank all the staff members in the Forensic Medicine and Clinical Toxicology, Ain Shams University for their kind help and cooperation.

LIST OF CONTENTS

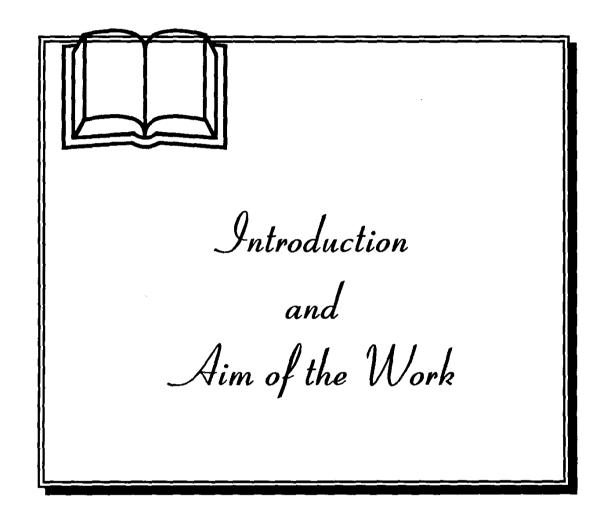
	Page
* Introduction and aim of the work	1
* Review of literature	3
- Historical review	3
- Chemistry	4
- Uses and administration	5
- Pharmacokinetics	10
- Pharmacodynamics	16
- Toxicity and adverse reactions	19
* Methodology	32
* Results and discussion	47
- Evaluation of gentamicin nephrotoxicity	49
- Evaluation of plasma lipid profile changes	57
- Evaluation of gentamicin withdrawal	73
- Histopathological findings of the kidney	118
* Conclusion and recommendations	137
* Summary	134
* References	143
* Arabic summary	

LIST OF TABLES


	Page
	_
Table 1	52
Table 2	53
Table 3	54
Table 4	55
Table 5	63
Table 6	64
Table 7	65
Table 8	66
Table 9	67
Table 10	68
Table 11	69
Table 12	86
Table 13	. 87
Table 14	88
Table 15	89
Table 16	90
Table 17	91
Table 18	92
Table 19	93
Table 20	94
Table 21	95
Table 22	96
Table 23	97
Table 24	98
Table 25	99
Table 26	125
Table 27	126
Table 28	127

LIST OF FIGURES

	Page
Figure 1	128
Figure 2	128
Figure 3	129
Figure 4	129
Figure 5	130
Figure 6	130
Figure 7	131
Figure 8	131
Figure 9	132
Figure 10	132
Figure 11	133


LIST OF HISTOGRAMS

	Page
Histogram 1	56
Histogram 2	56
Histogram 3	7 0
Histogram 4	70
Histogram 5	71
Histogram 6	71
Histogram 7	72
Histogram 8	100
Histogram 9	100
Histogram 10	101
Histogram 11	101
Histogram 12	102
Histogram 13	102
Histogram 14	103
Histogram 15	103
Histogram 16	104
Histogram 17	104
Histogram 18	105
Histogram 19	105
Histogram 20	106
Histogram 21	106
Histogram 22	107
Histogram 23	107
Histogram 24	108
Histogram 25	108
Histogram 26	109
Histogram 27	109
Histogram 28	110
Histogram 29	110
Histogram 30	111
Histogram 31	111
Histogram 32	112
Histogram 33	112
Histogram 34	113
Histogram 35	113
Histogram 36	114
Histogram 37	114
Histogram 38	115
Histogram 39	115
Histogram 40	116
Histogram 41	116
Histogram 42	117

To my family

Nabil Nassif

INTRODUCTION AND AIM OF THE WORK

Gentamicin is a widely used antimicrobial, it belongs to the aminoglycosides group. It acts through irreversible binding to the 30S subunit of bacterial ribosomes, blocking the recognition step in protein synthesis, and causing misreading of the genetic code (*Olin et al.*, 1993).

Gentamicin nephrotoxicity is due to accumulation of the drug in renal cortex and production of morphological changes in the proximal tubular cells. This depends on duration of therapy, total dose administered and age of the patient (Samadian et al., 1993).

Nephrotoxicity has been associated with plasma trough concentrations greater than 2 microgram per milliliter (µg/ml). However, evidence from clinical studies is conflicting, and nephrotoxicity may still occur despite monitoring to ensure that trough concentrations are maintained below this value (*Katzung*, 1995).

Induction of nephrotoxicity in rats by gentamicin -as exhibited by elevation of plasma creatinine concentration-produced elevation in plasma total cholesterol and triglycerides. It also caused reduction in phospholipids level (Abdel-Gayoum et al., 1993).

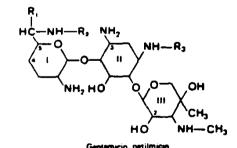
The objective of this study is to find out the relationship between gentamicin induced nephrotoxicity and the changes in plasma lipid profile in rats. Also to follow up these changes seven and fourteen days after withdrawal of the drug to assess the reversibility of these changes.

HISTORICAL REVIEW

Aminoglycosides are a group of bactericidal drugs originally obtained from various *Streptomyces* species and sharing chemical, anti-microbial, pharmacological and toxic characteristics. At present, the group includes streptomycin, neomycin, kanamycin, gentamicin, amikacin, tobramycin, sisomicin, netilmicin, and others *(Jawetz, 1992)*.

Gentamicin was discovered in the Schering Research Laboratories. It was first studied and described as a new broad spectrum antibiotic complex, produced by a species of bacteria of the genus *Micromonospora* in 1963 by Weinstein and his colleagues (*Weinstein et al.*, 1964).

Later in 1963, **Rosselot and coworkers (1964)** isolated, purified and characterized gentamicin as a bactericidal broad spectrum antibiotic produced by actinomycete *Micromonospora*.


The difference in spelling "-micin" as compared with that of the other aminoglycoside antibiotic "-mycin" reflects the difference in origin, as gentamicin is produced by a species of *Micromonospora*, while other aminoglycosides are produced by different species of *Streptomyces* (Sande and Mandell, 1991).

CHEMISTRY

Aminoglycosides in general consist of two or more amino sugars joined in glycosidic linkage to a hexose nucleus. In gentamicin this hexose, or aminocyclitol is 2-deoxystreptamine. Thus members of gentamicin family are aminoglycosidic aminocyclitols (Clark et al., 1992).

The gentamicin family includes gentamicin C₁, C_{1A}, C₂, C_{2A}, and C_{2B}, sisomicin, and netilmicin (the 1-N-ethyl derivative of sisomicin). It contains a 3-amino sugar (garosamine) and a second amino sugar. Variations in methylation of the second amino sugar result in the different components of entamicin (Zenner et al., 1994). These modifications appear to have little effect on biological activity (Sande and Mandell, 1991).

Gentamicin sulphate is a complex mixture of the sulfates of gentamicin C₁, C_{1A} , and C_{2} . Some commercial samples may contain significant quantities of the minor components gentamic n C_{2A} and C_{2B}. It contains when dried, not less than 590 units of gentamicin per mg (Bengtsson et al., 1986). This figure shows the chemical structures of different members of the gentamicin family (Katzung, 1995).

Ring II Ring R, CH, CH, C,H,

Chemical Properties:

Gentamicin is a white to almost white powder. It is freely soluble in water, practically insoluble in alcohol, acetone, chloroform and ether. A four per cent solution in water has a pH of 3.5-5.5. The powder is sterilized by irradiation and solutions by filtration (*Reynolds et al.*, 1993).

One unit of gentamicin is contained in 0.00156 milligram [mg] of the first International Reference Preparation, which contains 641 units per mg. So, 80.000 units are approximately equivalent to 80 mg of gentamicin (Kucers & Bennett, 1993).

USES AND ADMINISTRATION

Uses of Gentamicin

Gentamicin is used to treat severe systemic infections due to sensitive gramnegative and other organisms. These include biliary tract infections as acute
cholecystitis or cholangitis, brucellosis, cat scratch disease and cystic fibrosis
(Hartzen et al., 1994). Also it is used in the treatment and prophylaxis of
endocarditis due to streptococci, enterococci or staphylococci (Durack, 1990).

It is also indicated in endometritis, gastroenteritis, listeriosis, otitis externa,
otitis media, pelvic inflammatory disease, peritonitis and pneumonia (Noone,
1989).

It is given systemically in skin disorders, such as burns and ulcers, for pseudomonal and other gram-negative infections. It is also used in urinary tract infections as acute pyelonephritis, septicemia and prophylaxis of surgical infections (Clark et al., 1992).