
AIN SHAMS UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF GEOPHYSICS

EOELECTRIC AND HYDROGEOLOGIC STUDIES ON THE QUATERNARY AQUIFER IN THE NILE

VALLEY IN ASYUT AND SOHAG GOVERNORATES, EGYPT

THESIS

Submitted for the

Ph.D. Degree in Science (Geophysics)

To

Faculty of Science - Ain shams University
By

ABDEL MONAIM ABOUL FETOH ESSAM EL DIN (M.Sc., in Hydro-geophysics)

Supervised By

Dr. FATMA ABDEL RAHMAN ATTIA

Director of Research Institute

For Groundwater, Water

49967

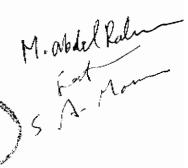
Research Center

Prof.Dr. MAHDY ABDEL RAHMAN

Prof. of Geophysics

Department of Geophysics

Ain Shams University


Dr. SALAH EL DEEN MOUSA

Lecturer of Geophysics

Department of Geophysics

Ain Shams University

1994

ACKNOWLEDGMENT

I present my sincere gratitude and deep thanks to Prof. Dr. Mahdy Abdel Rahman, Professor of Geophysics, Faculty of Science, Ain Shams University, for his interest, continuous encouragement and direct supervision.

Very grateful appreciation and deep thanks are expressed to Dr. Fatma Attia, Director of Research Institute For Groundwater, For her direct supervision, valuable help and continuous encouragement.

Deep thanks and sincere gratitude to Dr. Salah El Deen Abd Wahab Mousa, Department of Geophysics, Faculty of Science, Ain Shams University, for his direct supervision, great help, guidance and continuous encouragement.

Deep thanks to prof. Dr. Kamal Hefny and the staff of the Research Institute For Groundwater For their sincere cooperation.

ABSTRACT

The study area includes most of Asyut and Sohag governorates. It is part of the Nile Valley, which is striking in the NW-SE direction and lies between longitudes 30° 30' and 32° 00 E and latitudes 26° 00 N and 27° 30' N. 106 vertical Electrical Soundings (VESes) were carried out in the study area. They were distributed in 16 profiles crossing the Nile Valley. Among these profiles, only eight geoelectric sections are carefully discussed to detect the geometery and geoelectric characteristics of the Quaternary Interpretation of the sounding curves and aquifer. comparison with the available drilled wells are used to detect the aquifer geometery. The thickness of the Quaternary aquifer in the study area ranges between 160 and 310 m, in which the maximum thicknesses are detected around Manfalut and Tima cities. Another 30 VESes were carried in Wadi Asyuti to assest Elregarding water The thickness of Wadi El-Asuyti aquifer potentiality. ranges between 80 and 275 m. Generally the Nile Valley is characterized by its medium to aquifer high aquifer while, El-Asyuti potentiality, Wadi characterized by its low potentiality.

TABLE OF CONTENT

STRACT	<u>Paqe</u>
EFACE	. 1
PTER I: INTRODUCTION AND PREVIOUS GEOPHYSICAL STUDIE	ES 3
1.1. General Setting of the Study Area	. 3
1.2. Climate	. 3
1.3. Previous Geophysical Studies	. 6
1.3.1. Aeoromagnetic Survey	. 6
1.3.2. Magnetic Survey	. 7
1.3.3. Gravity Survey	. 8
1.3.4. Electric Survey	. 10
1.4. Scope of the Study	11
•	
APTER II : GEOMORPHOLOGIC AND GEOLOGIC SETTING OF T	
AREA	
2.1. Geomorphology	
2.2. Geology	. 16
2.2.1. Regional Geological Setting of t	the Nile
Valley	. 16
2.2.2. Geological Setting of the Study Are	ea 27
2.3. Geological Structures	36
2.3.1. Regional Structural Setting	36
2.3.2. Local Structural Setting	37
APTER III GEOELECTRICAL SURVEY AND INTERPRETATION	
3.1. Introduction	
3.2. Equipment and Methodology	
3.3. Theoritical Background	. 44
3.3.1. Resistivity Calculations	. 45
3.3.2. Electrode Configuration	48
3.4. Interpretation Techniques of Vertical Elec	ctrical
Sounding	50
3.4.1. Introduction	. 50
3.4.2. Partical Curve Matching Method Techn	nique 51

	3.4.3.	bircoc nection recinitique	34
3.	5. Applicat	tion of Geoelectrical Sounding to the St	udy
	Area		55
	3.5.1.	Introduction	55
	3.5.2.	Iso-Apparent Electric Resistivity Maps	57
	3.5.3.	Geoelectrical Cross Sections	70
3.	6. The Dete	ection of Quaternary Paleo-Channel in the St	udy
	Area		89
3.	7. Base of	Aquifer Contour Map	91
HAPTER	R IV HYDROG	GEOLOGIC CHARACTERISTICS OF THE STUDY AREA.	. 95
4.	1. Introduc	ction	95
4.	2. Hydrogeo	ological Systems in the Study Area	95
	4.2.1.	Quaternary Aquifer	96
	4.2.2.	Lower Eocene Aquifer	98
4.	3. Hydrauli	ic Parameters of the Main Aquifer	98
4.	4. Groundwa	ater Flow	100
4.	5. Relation	n Between Groundwater and Nile Water	102
4.	6. Salinity	y Distribution	105
4.	7. Aquifer	Potentiality	107
HAPTER	V THE	E USE OF GEOELECTRICAL METHODS IN	THE
	ASS	SESSMENT OF WADI EL-ASYUTI GROUNDWA	TER
	POT	PENTIAL	110
			110
5.	2. Field In	vestigations	110
	5.2.1.	Geoelectrical Survey	110
	5.2.2.	Groundwater Quality	111
	5.2.3.	Hydraulic Characteristics of the Aquifer	111
5.	3. Geologic	cal-Geoelectrical Cross Sections	113
	5.3.1.	Profile 1-1'	113
	5.3.2.	Profile 2-2'	116
	5.3.3.	Profile 3-3'	116
	5.3.4.	Profile 4-41	116

		5.3.5.	Profile 5-5'	120
	5.4.	Areal Exte	ent of Wadi El-Asyuti Aquifer	120
		5.4.1.	Geometery	120
		5.4.2.	Relation Between Wadi El-Asyuti and the	Nile
			Valley	125
	5.5.	Groundwate	er Potential For Development	128
		5.5.1.	Recharge	128
		5.5.2.	Groundwater Quality	128
		5.5.3.	Depth to Groundwater	129
		5.5.4.	Groundwater Potential	129
HAPT	ER V	/I SUMMARY	AND CONCLUSIONS	130

LIST OF FIGURES

G.NO.		Page
1	Location Map of the Study Area	4
2	Tentative Basement Relief Map For the Study Area	9
3	Geomorphological Map of the Study Area	14
4	Geological Map of Egypt	18
5	Composite Stratigraphic Section in the Study Area	19
6	Hydrogeological Profile Through The Nile Valley	25
7	Columnar Section in the Western Scarp at Dr	unka
	Village	26
8	Geological Map of the Study Area	32
9	A Lithological Section Showing Armant Formation	33
.0	Orientation-Frequency Diagram	38
.1	Four Electrode Arrangement	47
.2	Generalized Cagniard Graph	53
.3	Schlumberger's Array	56
.4	Location Map of Soundings and Bore Holes in the S	tudy
	Area	58
.5	Iso-Apparent Resistivity Map at AB/2=30 m	61
.6	Iso-Apparent Resistivity Map at AB/2=50 m	63
.7	<pre>Iso-Apparent Resistivity Map at AB/2=100m</pre>	66
.8	Iso-Apparent Resistivity Map at AB/2=300m	68
.9	Iso-Apparent Resistivity Map at AB/2=500m	69
:O	Geoelectrical Cross Section A-A'	72
:1	Geoelectrical Cross Section D-D'	74
2	Geoelectrical Cross Section F-F'	77
3	Geoelectrical Cross Section I-I'	80
4	Geoelectrical Cross Section K-K'	82
5	Geoelectrical Cross Section M-M'	84
6	Geoelectrical Cross Section N-N'	86
7	Geoelectrical Cross Section P-P'	88
8	The Nile Course Along the Study Area	90
9	The Paleo-Channel of the River Nile	92
0	Base of Quaternary Aquifer	93
1	Hydrogeological Systems in the Study Area	97

32	Isopeizometeric Contour Map	101
33	River Nile - Observaton Wells, Hydrographs	103
34	Iso-Salinity Contour Map	106
35	Potentiality Map	108
36	Location Map of Wadi El-Asyuti and the VES's	
	Distribution	112
37	Lithology Description of Wadi El-Asyuti	Bore
	Hole	114
38	Geological-Geoelectrical Cross Section 1-1'	115
39	Geological-Geoelectrical Cross Section 2-2'	117
40	Geological-Geoelectrical Cross Section 3-3'	118
41	Geological-Geoelectrical Cross Section 4-4'	119
42	Geological-Geoelectrical Cross Section 5-5'	121
43	Aquifer Thickness Map of Wadi El-Asyuti Area	122
44	Base of Wadi El-Asyuti Aquifer	123
45	Resistivity of the Aquifer in Wadi El-Asyuti	124
46	Geological Map of Wadi El-Asyuti Area (After S	aid,
	1981)	126
47	Isopeizometeric contour Map at the Entrance of Wa	adi
	El-Asyuti	127

LIST OF TABLES

Table No.		Page
1	Hydraulic Parameters of Quaternary Aquifer	100
2	Classification of Water	107
3	Groundwater Salinity and Resisti	vity
	Measurements	111
4	Aquifer Transmisivity Values	113
5	Estimation of the Formation Factor	128
6	Estimation of Groundwater Quality	128

LIST OF APPENDICES

	Page
Appendix No.	
VESes interpretation & Geoelectrical Sections.	143
Bore Holes Descriptions	144

PREFACE

Water is becoming more and more a critical resource. In many places water is deteriorating both in quantity and quality, creating important questions for the communities involved: Will there be enough water to sustain our future needs? Is its quality adequate for the uses? Is the water being used efficiently, and with a minimum waste?

The answer to these questions dictates that, we know some basic things about the water supply, the quality of water, and its geographical and temporal distribution. Exploration for groundwater is one of the important works to answer such questions. Among field investigations, for groundwater exploration one can depend on geoelectrical surveys as a tool Geoelectrical survey is one of the cheapest tools applied in the field of groundwater One can distinguish investigation. two types ۵f resistivity measurements. In the first, known geoelectric profiling or mapping, the electrodes and probes are shifted without changing their relative configurations. This gives us an idea about the surface variation of resistance values within a certain depth. In the second method, known as geoelectric sounding, the position of the electrodes are changed with respect to a fixed point (known as the sounding point). In this way, the measured resistance values at the surface reflect the vertical distribution of resistivity values in a geoelectrical section. In this research, the resistivity sounding, (Schlumberger array has been applied). The geoelectrical field survey gives us some knowledge about surface and structural geology of the study area and few about the lithology of the formations. These data are needed essentially to support and emphasize the interpretation of the field measurements. Money and effort can be saved by using this method of exploration through the reduction of the amount of executional work (drilling of bore holes). Hydrogeological information are also needed to give a complete picture about the aquifer.

CHAPTER I

CHAPTER 1

INTRODUCTION AND PREVIOUS GEOPHYSICAL STUDIES

This work deals with a region in Upper Egypt, extending between Assiut and Sohag, as shwon in figure (1).

1.1. General setting of the study area

The study area includes most of the area of Asyut and Sohag governorates. This area is part of the Nile Valley striking in the NW-SE direction. It lies between longitudes 30° 30° and 32° 00 E and latitudes 26° 00 and 27° 30° N (Fig. 1). It covers a total length of about 200 km. The width of the valley in the area varies from 16 km to 25 km and increases at the areas, which are characterized by the presence of wadis.

1.2. Climate

The climate in the study area is arid and can be explained through many items. These items include temperature, evaporation and evapotranspiration, relative humidity, wind velocity, and rainfall.

The average maximum mean temperature is recorded during July and equals 30°C; while the minimum is recorded during January and equals 12°C. Temperature is considered as the main factor affecting the degree of evaporation.