PARTIAL LIVER TRANSPLANTATION IN DONOR AND RECIPIENT PAIRS OF EQUAL AND DIFFERENT SIZES

Thesis

Submitted for the partial fulfillment of M.D. Degree in Surgery

Bv

Khalid Aly Abou El - Ella

M.B., B.Ch. Alex, M. Surgery Alex Assis. Lecturer, Dept., of Surgery Liver Institute, Menoufeya University

SUPERVISORS

Prof. Dr. Hamdy Abdulla Professor of Surgery, Faculty of Medicine, Ain Shams University.

Prof. Dr. Amr Mohamed-Helmy

Professor of Surgery, Liver Institute. Menoufeya University.

Prof. Dr. Osama Gaber

Professor of Surgery, Transplant Surgery Division, University of Tennessee.

Prof. Dr. Houssein Amiri

Faculty of Medicine

Ain Shams University

Associate Professor of Surgery, Transplant Surgery Division, University of Tennessee.

1996

Acknowledgements

I had the honour to have Professors Dr. *Hamdy Abdulla* (Professor of Surgery, Ain Shams University), Dr. *Amr Helmy* (Professor of Surgery, Liver Institute, Menoufeya University), Dr. **Osama Gaber**, and Dr. *Houssein Amiri* (Professors of Surgery, Transplant Surgery Division, University of Tennessee) as supervisors to this thesis. I wish to express my deepest gratitude to them for their fruitful guidance, sincere help, and continuous care which were offered in order to fulfill this work.

Warmest appreciation and deep endless sense of gratitude to Professor Dr. *Hamdy Abdulla*, for his valuable help, constructive criticism, and efforts in supervising this work.

I am grateful to Professor Dr. *Amr Helmy*, for his encouragement and help to take such a scholarship. Also I am deeply indebted to him for his helpful suggestions which I incorporated many of them and for his support, advises, and valuable supervision.

I would like to thank all those who helped me in producing this work, particularly, Professor Dr. *Osama Gaber* and Professor Dr. *Houssein Amiri*, who kindly allowed me to benefit from their extensive experience.

My deep thanks to Dr. *Osama Gaber*, for his guidance and appreciable great assistance. Also, I would like to express my thanks to Dr. *Gaber's family*, for their very friendly relationship and help throughout my family's stay in U.S.A.

I am particularly thankful to Dr. *Houssein Amiri*, for maintaining an efficient and harmonious relationship and for his very friendly supervision, encouragement, and his sincere precious assistance both in this thesis' experimental work and throughout the surgical practice.

CONTENTS

	Page
Part One: 1. Introduction and aim of the work	1
Part Two: Review of Literature	
2. Historical background	8
3. Anatomy of the liver and biliary tract	12
4. Operative procedures	38
Part Three: Material and Methods	
Part Four: Results	75
Part Five: Discussion	112
Part Six: Summary and Conclusion	122
Part Seven: References	124
Arabic Summary	

LIST OF TABLES

Tab.	Title	Page
No.		
1	Liver wt. and clinical data of auto transplant in dogs (group I)	78
2	Liver wt. and clinical data of allo transplant in dogs	79
	between donor and recipient at ratio I:I (group II)	
3	Liver wt. and clinical data of allo transplant in dogs	80
	between donor and recipient at ratio 1:1.5 (group III)	
4	Liver wt. and clinical data of allo transplant in dogs	81
	between donor and recipient at ratio 1:2 (group IV)	
5	Comparison between mean % of donor/recipient	82
	liver ratio in the different four groups	
6	Comparison between mean % of graft liver volume	83
	in the different four groups	
7	Survival days, autopsy and pathological findings of	88
	auto transplanted dogs (group I)	
8	Survival days, autopsy and pathological findings of	89
	Allo transplant in dogs between donor and recepient	
	at ratio 1:1 (group II)	
9	Survival days, autopsy and pathological findings of	90
	Allo transplant in dogs between donor and recepient	
	at ratio 1:1.5 (group III)	
10	Survival days, autopsy and pathological findings of	91
	Allo transplant in dogs between donor and recepient	
	at ratio 1:2 (group IV)	
11	Relationship between survival days in the different	92
	four groups	
12	Comparison between % of liver segment	93
	regeneration in the different four groups at 2-15 days	
	and 30 days	
13	Relationship between survival days, D/R L ratio and	94
	liver volume in the different four groups	

Statistical data of serum albumin (g/dl) in the four different groups at different intervals (0, 1, 7, 30 days)

Statistical data of SCRT (IUII) in the four different

96

- Statistical data of SGPT (IU/L) in the four different groups at different intervals (0, 1, 7, 30 days)
 Statistical data of SGOT (IU/L) in the four different loo
- groups at different intervals (0, 1, 7, 30 days)

 17 Statistical data of Alk. phosphatase (IU/L) in the four different groups at different intervals (0, 1, 7, 30 days)

 18 Statistical data of GGTP (IU/L) in the four different 104
- Statistical data of prothrombin time (sec) in the four different groups at different intervals (0, 1, 7, 30 days)
 Statistical data of serum total bilirubin (mg/dl) in the 108

groups at different intervals (0, 1, 7, 30 days)

four different groups at different intervals (0, 1, 7, 30 days)

21 Statistical data of serum direct bilirubin (mg/dl) in the four different groups at different intervals (0,1, 7,

30 days)

LIST OF FIGURES

Fig.	Title	Page
No.		
	Figures in Review	
3-1	Segmental anatomy of the liver as described by	14
	Healey and scroy	
3-2A	Labor fissure, which on the visceral surface of the	15
	liver	
3-2B	Segmental functional anatomy of the liver as	15
	described by Couinaud	
3-3	Diagrammatic presentation of the segmental	16
	functional anatomy of liver emphasizing portal	
	distribution and hepatic veins	
3-4A	Composite drawing illustrating the prevaling pattern	21
	of branding of the hepatic artery	
3-4B	The distribution of the hepatic arteries and biliary	21
	ducts	
3-5	Hepatic artery variations	22
3-6	Anatomic variations of the portal vein	26
3-7	biliary and vascular anatomy of the left liver	28
3-8	Main variations of the hepatic duct confluence	33
3-9	A sketch to show the main variations of the	33
	intrahepatic ductal system	
3-10	The bile duct blood supply	34
3-11	Superficial lymphatic drainage of the liver	36
4-1	the segments of the liver as described by Couinaud	39
4-2	Reduced liver grafting using left lobe, right lobe, or	39A
	left lateral segment grafts: being used to expand	
	donor supply for infant and small children	
4-3	Dissection completed	40
4-4	the parenchymal reduction for a left lateral	42
	segmentectomy by dividing the liver parenchyma	
	first and saving the division of the Portal Structures	

	until last	
1-5	Graft reduction complete	43
4-6	Preparation of left lobe graft	45
4-7	Split-Liver transplantation	46
4-8		49
1 -9	Graft preparation for LRLT requires the extension	52
	of the portal vein and hepatic artery	
I- l 0	The three recipient hepatic vein orifices joined to	52
	fashion a large triangular orifice to revive the graft	
	left hepatic vein and preserve the vena cava	
4-]	Recipient operation	53
	Figures in Material and Methods	
1	Liver anatomy in the dog	56
2	Liver segmental anatomy in the dog	56
3	Fisher scientific model 711	59
4	A satensky clamp applied at the entrance of the left	62
	and middle hepatic vein to the cava and the vein is	
	divided	
5	The procured liver segment	62
6	The abdomen is entered through a long midline	63
	incision from the xyphoid process down to	
	suprapubic area	
7	The portal tract structures showing the bile duct,	63
	hepatic artery and portal vein	
8	this picture showing portal vein and inferior vena	65
	cava	
9	A small portocaval shunt is established for securing	65
	the stable hemodynamic situation during	
	transplantation, starting the posterior layer	
10	The posterior layer of Portocaval shunt is completed	66
	and starting the anterior layer	
I 1	The Portocaval shunt is completed	66

Showing the vascular clamp applied to the hepatic

	artery, portal vein and hepatic vein stump	
13	the procured liver segment showing the hepatic	68
	artery and its portal vein stump	
14	Anatomizing the left hepatic vein of the graft to the	69
	left hepatic vein of the recipient, end to end by 5/0	
	prolene running suture	
15	Posterior layer of hepatic vein anastomoses is done	69
	and starting the anterior layer	
16	Showing anastomoses of both portal vein and	70
	hepatic artery	
17	The vascular clamp from the entrance of the left	70
	hepatic vein to the inferior vena cava is removed	
18	The circulation (reperfusion) is re-established	72
10	through the liver graft	
19	The last anastomoses is the bile duct which is	72
	performed end to end with 5/0 Vicryl interrupted	
	suture	
,	Figures in Results	07
ŀ	Mean serum albumin for the four studied groups	97
	throughout the study period was statistically insignificant	
2	Mean serum SGPT for the four studied groups	99
2	throughout the study period was statistically	77
	insignificant	
3	Mean serum SGOT for the four studied groups	101
J	throughout the study period was statistically	101
	insignificant	
4	Mean serum Alk. Phosphatase for the four studied	103
	groups throughout the study period was statistically	
	insignificant	
5	Mean serum GGTP for the four studied groups	105
	throughout the study period was statistically	
	insignificant	

- 6 Mean Prothrombin time for the four studied groups 107 throughout the study period was statistically insignificant
- Mean serum total bilirubin for the four studied 109 groups throughout the study period was statistically insignificant
- 8 Mean serum direct bilirubin for the four studied ill groups throughout the study period was statistically insignificant

Part (1)

I. introduction

1 INTRODUCTION

Liver transplantation has evolved rapidly in the past few years and now provides as the most effective treatment for the most forms of chronic - end stage liver disease and acute or subacute liver failure in both children and adults (1). The liver can be transplanted in two different manners: either in orthotopic position after removal of the host liver and replacing it with a homograft in the same position (orthotopic liver transplantation) or in a heterotopic position where an extra liver is inserted at an ectopic site (auxiliary liver transplantation) (2,3).

Over the past 20 years, orthotopic liver transplantation (OLT) has proven to be the therapeutic choice in any patient with progressive irreversible liver disease likely to terminate fatally, for whom the standard therapy for the particular condition is no longer successful (3,4). Advances in surgical and anaesthetic techniques, improved post, operative care and medical management, introduction of cyclosporine A (CYA) as an immunosuppressant (5), the development of the University of Wisconsin (UW) preservation fluid and introduction of venous bypass during the anhepatic phase of the liver transplant operation (6) have resulted in a progressive improvement in the results of OLT (7).

With improved success, patient referral has increased at a rate far greater than that of organ donation. The shortage of donor organs has caused serious problem that limit the use of liver transplantation particularly in children (8). Two main obstacles exist in performing liver transplantation in children: The first is mismatching the donor and the recipient size, which is important for both vascular anastomoses and abdominal closure (9). In some cases, the large size of the liver graft renders transplantation technically difficult or impossible (10). The second

problem is the scarcity of heart-beating child donors. Starzl et al (11) adopted the use of pediatric donors for orthotopic liver transplantation in children and they have been successful in acquiring adequate number of pediatric donors in the United States. But in many countries, obtaining the liver grafts from child donors is exceedingly rare (10). Because of the scarcity of pediatric donors together with the problem of size-matched cadaver organ donors, many children die while on the transplant waiting list (7).

The pressure of over-increasing candidate lists with a limited donor supply has stimulated innovative surgeons to pursue additional methods of graft expansion. The principle of a reduced-size grafts made it possible to use adult donors for children (10,12).

Reduced-size hepatic transplantation (RLT) is used to reduce the size of the liver of a donor to provide a hepatic allograft for a recipient who is usually some what smaller than the donor. This technique is used for pediatric transplantation, when the donor availability is limited by the size of the recipient. The result of several studies done at institutions have demonstrated that reduced- size hepatic allograft provide excellent long term hepatic replacement, with survival results equivalent to transplantation using the whole liver grafts (13). One of the major changes in the liver transplantation has been the application of the reduced-size liver transplants (RLT). Despite the greater technical difficulty of performing reduced-size hepatic transplantation, RLT has the great advantage of expanding the pool of donors and decreasing pretransplant mortality in the pediatric age group. In the last several years, reduced-size liver transplantation for pediatric patients has become a standard procedure at many centers specializing in pediatric liver disease (14,15).

Following the progressive improvements and safe performance of "reduced-size hepatic transplants" the next logical development was the concept of the use of one graft to provide two viable grafts for two

separate recipients, the split liver procedure (SLT). Recent anatomical studies of the liver have made much information available particularly the portal basis for the segmentation of the liver and individual biliary drainage of each segment (12),this allows the division of the liver into two transplants, each with an artery, portal vein, biliary duct and venous drainage (16). There are two possibilities of splitting the liver parenchyma: either through the umbilical fissure, between the left lateral and left medial segments, or through the main liver fissure, between the left median and right median segments. The technique of the split liver, is one of the recent technical variant used to increase the flexibility of liver replacement and maximize the use of the donor liver pool (17).

The successful use of RLT and SLT provided the basis for the use of segments from living donors (18). Recently a preliminary study of hepatic transplantation in dogs, using living donors was done. The experience with living donors in animal laboratory combined with successful clinical experience with reduced-size and "split-liver" hepatic transplantation in children provide the technical foundation for transplantation using living donors in humans (19).

Living related liver transplantation (LRLT) has been used extensively at pediatric centers where no suitable cadaveric organ is available and in countries such as Japan, where brain death has not been accepted (20).

LRLT has several advantages over other forms of reduced liver transplantation:

1- The main advantage of LRLT over partial transplantation from braindead donors is the high viability of the graft, because the liver is obtained from a healthy donor under optimal conditions with limited preservation time. Assured viability would be highly favorable to transplant outcome.