RED BLOOD CELL SUBSTITUTES

ESSAY Submitted in Partial fulfilment of Master Degree in Anesthesia

GHADA ALI HASSAN

(M. B. B. Ch.)

G

Supervisors

Prof. Dr. SAMIR YOUAKIM BASSILY

Professor of Anesthesia and Intensive Care
Ain Shams University

Prof. Dr. MEGAHED MOHAMED ABDEL-FATTAH

Professor of Anesthesia and Intensive Care
Ain Shams University

Dr. MOHAMED ISMAIL EL-SEIDY

Lecturer of Anesthesia and Intensive Care
Ain Shams University

Faculty of Medicine Ain Shams University 1996

المالح المال

﴿قَالُوا سَبَحَانَكَ لِا عَلَمَ لَنَا اللهِ مَا عَلَمُ لَنَا اللهِ مَا عَلَمُتِنَا إِنْكَ انْتَ الْعَلَيْمِ الْحَكِيمِ ﴾

صدق الله العظيم

(سورة البقرة آيه ٣٢)

ACKNOWLDGEMENT

I would like to express my deep thanks and sincere gratitude to Prof. Dr. Samir Youakim Bassily, Professor of Anesthesia and Intensive Care. Ain Shams University. I am indebted to his close supervision, valuable instructions, encouragement & thorough revision of this work.

I owe gratefulness and much regards to Prof. Dr. Megahed Mohamed Abdel-Fattah, Professor of Anesthesia and Intensive Care, Ain Shams University, for his guidance, valuable support, precious instructions and encouragement throughout this work.

I would like to display my very indebtedness to Dr. Mohamed Ismail El-Seidy, Lecturer of Anesthesia and Intensive Care, Ain Shams University, for the limitless help, valuable advice and kind encouragement.

Ghada Ali Aassan

CONTENTS

Subject	Page
List of Tables.	
List of Figures.	H
List of Abbreviations	m
Introduction.	1
Physiology of Oxygen Carriage.	3
Pathophysiology of Anemias.	22
Compensatory Mechanisms of Anemias.	39
Indications of Blood Transfusion.	46
Complications of Blood Transfusion.	58
Red Blood Cell Substitutes.	84
Summary	122
References	126
Arabic Summary	

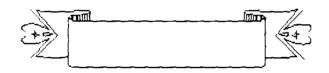
LIST OF FIGURES

Number	Figure	Page
1	Oxygen dissociation curve and oxygen supply.	8
2	Oxygen-hemoglobin dissociation curve.	II.
3	Effects of temperature and pH on the oxygen-hemoglobin dissociation curve.	15
4	Formation and catabolism of 2,3 DPG.	16
5	Curves for fetal hemoglobin and adult hemoglobin.	17
6	Dissociation curves for hemoglobin and myoglobin.	21
7	Oxygen content curves for RBC _s and plasma.	86
8	Oxygen content curves for 100 % PFC _s and plasma.	87
9	Oxygen content curves for plasma and 20 %, 40 % PFC _s .	88
10	Comparison of the oxygen - carrying capacity of blood, extracellular hemoglobin solution and the perfluorocarbons, flusol-DA and perflubron.	96

LIST OF ABBREVIATIONS

Abbreviation	Item
AIDS	Acquired Immune Deficiency Syndrome
АГНА	Autoimmune Hemolytic Anemias
A ^o	Angstrom
ARDS	Adult Respiratory Distress Syndrome
Arg	Arginine
Asn	Aspargin
ATP	Adenosine Triphosphate
BP	Barometric Pressure
2,3 BPG	2,3 Biphosphoglycerate
CaCO ₂	Arterial Carbon Dioxide Tension
CaO ₂	Arterial Oxygen Content
CMV	Cytomegalo Virus
CvO ₂	Venous Oxygen Content
DBBF	bis-3,5 Dibromosalicyl Fumarate
DHTR	Delayed Hemolytic Transfusion Reaction
DIC	Disseminated Intravascular Coagulation
DMB	Diffuse Microvascular Bleeding
DNA	Deoxyribonucleic Acid
2,3 DPG	2,3 Diphosphoglycerate
FDA	Food and Drug Administration
FIO ₂	Fraction Inspired Oxygen
FL-DA	Flusol-DA
GvHD	Graft versus Host Disease
Hb	Hemoglobin
HbA	Adult Hemoglobin
HbF	Fetal Hemoglobin
HBV	Hepatitis B Virus

The development of artificial sources for blood has b subject of scientific research for many decades. The 1 advantages being sought are increased safety (no infect disease transmission), increased availability of the product blood shortages or public appeals for donors), stable and oxygen - carrying capacity, and no need to perform compatitesting or even ABO / Rh typing prior to transfusion (Wins 1995).


Work is being done using two different approaches solve this problem. Hemoglobin solutions and perfluorochements are the two products that have been most extensive evaluated (Gould et al., 1996).

The most important functions of a red blood cell subst are to transport oxygen and carbon dioxide effectively an support circulatory dynamics (Gould et al., 1996).

More recently, recombinant-DNA techniques have enal production of human hemoglobin in host expression systems, progress is being made towards the creation of a genetic engineered molecule incorporating the properties required blood substitute (*Ogden*, 1992).

A recombinant - based hemoglobin product that cont the best features found in these research focus may be the answer at some time in the FUTURE. Clearly the advantage an artificial product make the search well worthwhile (Winsi 1995).

PHYSIOLOGY OF OXYGEN CARRIAGE

