SCINTIGRAPHIC CEREBRAL BLOOD FLOW STUDY AND CT SCAN IN SUBACUTE CEREBROVASCULAR STROKE

Thesis

Submitted For Partial Fulfillment of the M.D. Degree (RADIO-DIAGNOSIS)

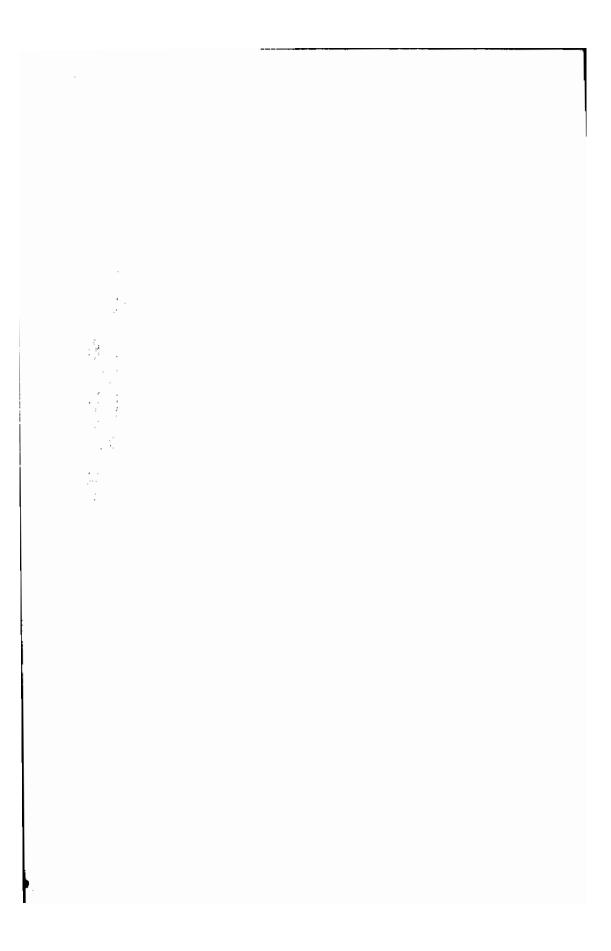
By
ESHRAK EMAM HASSANEIN
M.B.,B.Ch. &M.Sc.

SUPERVISORS

Prof. Dr. JANNETTE BOUSHRA HANNA

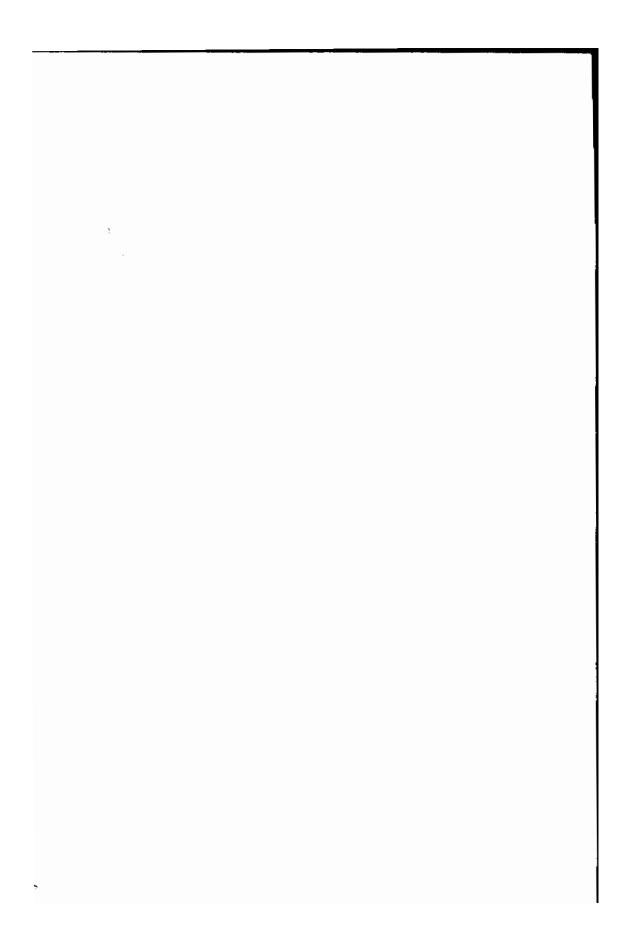
Prof. of Radio-Diagnosis Ain-Shams University

Prof. Dr. AHMED TALAAT KHAIRY


616.67572 E.E Prof. of Radio-Diagnosis Ain-Shams University

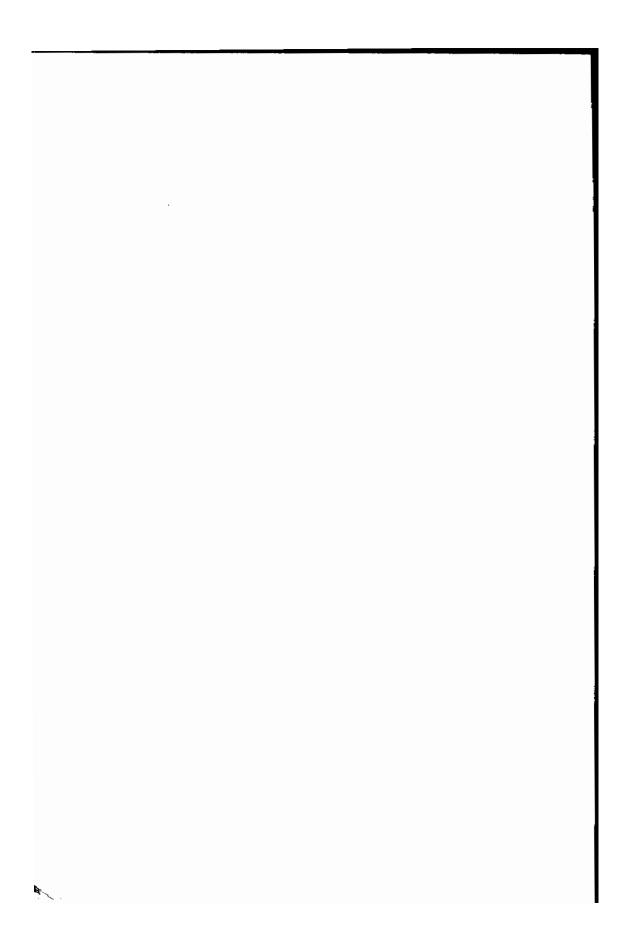
Prof. Dr. MOHAMMED OSSAMA ABDULLGHANY

Prof. of Neuro-Psychiatry Ain-Shams University


Ain Shams University Faculty of Medicine 1997

Acknowledgement

I wish to express my deepest thanks and supreme gratitude to *Prof. Dr. Jannette Boushra Hanna*, Professor of Radiodiagnosis, Ain Shams University, for her encouragement, judicious support and kind advise without which this work would not have been possible.


I also wish to thank *Prof. Dr. Ahmed Talaat Khairy*, Professor of Radiodiagnosis, Faculty of medicine, Ain Shams University for his unfailing concern, sincere guidance, and kindness that helped bringing this work forward.

Thanks to *Prof. Dr. Mohammed Ossama Abdul Ghany*, Professor of Neuro-Psychiatry, Faculty of Medicine, Ain Shams University for his great help, assistance and valuable advice.

Also, I would like to thank *Dr. Mohammed Yehia*, Lecturer of Radiodiagnosis, and *Dr. Ayman Emam*, Lecturer of Neuro-Psychiatry, Faculty of Medicine, Ain Shams University for their cooperation and great help.

I would like also to thank all my teaching staff, residents and technicians in the Department of Radiodiagnosis, Ain Shams University.

Finally, my warmest thanks go to my family for their great help and cooperation.

LIST OF CONTENTS

<u>, </u>	Page
1. introduction and aim of work	ĭ
2. Review of literature	3
3. Scintigraphic and CT anatomy of the brain	11
4. Pathology of cerebrovascular stroke	35
5. Scintigraphic and CT examination of the	53
brain	55
6. Material and Methods	59
7. Results	64
8. Illustrative cases	79
9. Discussion	108
10. Summary	123
11. Conclusion	125
12. References	
13. Arabic summary	126

16.	CT and SPECT findings in group 2-c	76
17.	CT and SPECT findings in 7 patients with	77
	haemorrhagic stroke	
18.	CT versus SPECT in No of lesions, detection	78
	of remote effects and detection of white	
	matter lesions	

ABSTRACT

The study includes 47 patients presented for the evaluation of regional cerebral blood flow (rCBF). Both CT Scan of the brain and SPECT evaluation of rCBF were performed for all patients.

The general advantages of SPECT examination of rCBF over CT Scan certainly overweigh its disadvantages, therefore SPECT studies of rCBF should be applied whenever possible as the technique of first choice to study rCBF in patients with subacute cerebrovascular stroke.

INTRODUCTION AND AIM OF THE WORK

INTRODUCTION AND AIM OF WORK

Cerebrovascular stroke is the most devastating neurologic disease in adults. It results from ischaemic injury to the motor or sensory fibers in the region of internal capsule (Boyko et al., 1987).

The study of cerebral blood flow proved useful in transient ischaemic attack (TIA), prolonged reversible ischaemia with neurological deficit (PRIND), focal epilepsy, trauma and migraine. In most circumstances, where new treatment regimes are being investigated for these groups of patients, cerebral blood flow studies would be expected to act as useful monitors (Costa et al, 1991).

blood flow in man have been available for many years, most of these lacked spatial resolution and depth resolution. The 133 Xenon planar method, in particular, on which most of the information on cerebral blood flow (CBF) is based, has been shown to be insensitive and subject to artifacts. At the opposite extreme, single photon emission computed tomography (SPECT) is the most accurate technique designed to give regional quantitative information on brain perfusion and metabolism. The unique advantage of SPECT lies in its ability to provide a metabolic map of disease processes.

		Ī